28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      New therapeutic strategies for the treatment of acute lymphoblastic leukaemia.

      Nature reviews. Drug discovery
      Antibodies, Monoclonal, therapeutic use, Antineoplastic Agents, Humans, Nucleosides, Precursor Cell Lymphoblastic Leukemia-Lymphoma, drug therapy, genetics, immunology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although contemporary treatments cure more than 80% of children with acute lymphoblastic leukaemia (ALL), some patients require intensive treatment and many patients still develop serious acute and late complications owing to the side effects of the treatments. Furthermore, the survival rate for adults with ALL remains below 40%. Therefore, new treatment strategies are needed to improve not only the cure rate but also the quality of life of these patients. Here, we discuss emerging new treatments that might improve the clinical outcome of patients with ALL. These include new formulations of existing chemotherapeutic agents, new antimetabolites and nucleoside analogues, monoclonal antibodies against leukaemia-associated antigens, and molecular therapies that target genetic abnormalities of the leukaemic cells and their affected signalling pathways.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: not found
          • Article: not found

          Live or let die: the cell's response to p53.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.

            5-Azacytidine was first synthesized almost 40 years ago. It was demonstrated to have a wide range of anti-metabolic activities when tested against cultured cancer cells and to be an effective chemotherapeutic agent for acute myelogenous leukemia. However, because of 5-azacytidine's general toxicity, other nucleoside analogs were favored as therapeutics. The finding that 5-azacytidine was incorporated into DNA and that, when present in DNA, it inhibited DNA methylation, led to widespread use of 5-azacytidine and 5-aza-2'-deoxycytidine (Decitabine) to demonstrate the correlation between loss of methylation in specific gene regions and activation of the associated genes. There is now a revived interest in the use of Decitabine as a therapeutic agent for cancers in which epigenetic silencing of critical regulatory genes has occurred. Here, the current status of our understanding of the mechanism(s) by which 5-azacytosine residues in DNA inhibit DNA methylation is reviewed with an emphasis on the interactions of these residues with bacterial and mammalian DNA (cytosine-C5) methyltransferases. The implications of these mechanistic studies for development of less toxic inhibitors of DNA methylation are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome.

              BCR-ABL, a constitutively activated tyrosine kinase, is the product of the Philadelphia chromosome. This enzyme is present in virtually all cases of chronic myeloid leukemia (CML) throughout the course of the disease, and in 20 percent of cases of acute lymphoblastic leukemia (ALL). On the basis of the substantial activity of the inhibitor in patients in the chronic phase, we evaluated STI571 (formerly known as CGP 57148B), a specific inhibitor of the BCR-ABL tyrosine kinase, in patients who had CML in blast crisis and in patients with ALL who had the Ph chromosome. In this dose-escalating pilot study, 58 patients were treated with STI571; 38 patients had a myeloid blast crisis and 20 had ALL or a lymphoid blast crisis. Treatment was given orally at daily doses ranging from 300 to 1000 mg. Responses occurred in 21 of 38 patients (55 percent) with a myeloid-blast-crisis phenotype; 4 of these 21 patients had a complete hematologic response. Of 20 patients with a lymphoid blast crisis or ALL, 14 (70 percent) had a response, including 4 who had complete responses. Seven patients with a myeloid blast crisis continue to receive treatment and remain in remission from 101 to 349 days after starting the treatment. All but one patient with a lymphoid blast crisis or ALL has relapsed. The most frequent adverse effects were nausea, vomiting, edema, thrombocytopenia, and neutropenia. The BCR-ABL tyrosine kinase inhibitor STI571 is well tolerated and has substantial activity in the blast crises of CML and in Ph-positive ALL.
                Bookmark

                Author and article information

                Comments

                Comment on this article