19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Critical Assessment of the Microorganisms Proposed to be Important to Enhanced Biological Phosphorus Removal in Full-Scale Wastewater Treatment Systems

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the microbiology of phosphorus (P) removal is considered essential to knowledge-based optimization of enhanced biological P removal (EBPR) systems. Biological P removal is achieved in these systems by promoting the growth of organisms collectively known as the polyphosphate accumulating organisms (PAOs). Also considered important to EBPR are the glycogen accumulating organisms (GAOs), which are theorized to compete with the PAOs for resources at the expense of P removal efficiency. Numerous studies have sought to identify the PAOs and their GAOs competitors, with several candidates proposed for each over the last few decades. The current study collectively assessed the abundance and diversity of all proposed PAOs and GAOs in 18 Danish full-scale wastewater treatment plants with well-working biological nutrient removal over a period of 9 years using 16S rRNA gene amplicon sequencing. The microbial community structure in all plants was relatively stable over time. Evidence for the role of the proposed PAOs and GAOs in EBPR varies and is critically assessed, in light of their calculated amplicon abundances, to indicate which of these are important in full-scale systems. Bacteria from the genus Tetrasphaera were the most abundant of the PAOs. The “ Candidatus Accumulibacter” PAOs were in much lower abundance and appear to be biased by the amplicon-based method applied. The genera Dechloromonas, Microlunatus, and Tessaracoccus were identified as abundant putative PAO that require further research attention. Interestingly, the actinobacterial Micropruina and sbr-gs28 phylotypes were among the most abundant of the putative GAOs. Members of the genera Defluviicoccus, Propionivibrio, the family Competibacteraceae, and the spb280 group were also relatively abundant in some plants. Despite observed high abundances of GAOs (periodically exceeding 20% of the amplicon reads), P removal performance was maintained, indicating that these organisms were not outcompeting the PAOs in these EBPR systems. Phylogenetic diversity within each of the PAOs and GAOs genera was observed, which is consistent with reported metabolic diversity for these. Whether or not key traits can be assigned to sub-genus level clades requires further investigation.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants.

            Activated sludge (AS) contains highly complex microbial communities. In this study, PCR-based 454 pyrosequencing was applied to investigate the bacterial communities of AS samples from 14 sewage treatment plants of Asia (mainland China, Hong Kong, and Singapore), and North America (Canada and the United States). A total of 259 K effective sequences of 16S rRNA gene V4 region were obtained from these AS samples. These sequences revealed huge amount of operational taxonomic units (OTUs) in AS, that is, 1183-3567 OTUs in a sludge sample, at 3% cutoff level and sequencing depth of 16,489 sequences. Clear geographical differences among the AS samples from Asia and North America were revealed by (1) cluster analyses based on abundances of OTUs or the genus/family/order assigned by Ribosomal Database Project (RDP) and (2) the principal coordinate analyses based on OTUs abundances, RDP taxa abundances and UniFrac of OTUs and their distances. In addition to certain unique bacterial populations in each AS sample, some genera were dominant, and core populations shared by multiple samples, including two commonly reported genera of Zoogloea and Dechloromonas, three genera not frequently reported (i.e., Prosthecobacter, Caldilinea and Tricoccus) and three genera not well described so far (i.e., Gp4 and Gp6 in Acidobacteria and Subdivision3 genera incertae sedis of Verrucomicrobia). Pyrosequencing analyses of multiple AS samples in this study also revealed the minority populations that are hard to be explored by traditional molecular methods and showed that a large proportion of sequences could not be assigned to taxonomic affiliations even at the phylum/class levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Back to Basics – The Influence of DNA Extraction and Primer Choice on Phylogenetic Analysis of Activated Sludge Communities

              DNA extraction and primer choice have a large effect on the observed community structure in all microbial amplicon sequencing analyses. Although the biases are well known, no comprehensive analysis has been conducted in activated sludge communities. In this study we systematically explored the impact of a number of parameters on the observed microbial community: bead beating intensity, primer choice, extracellular DNA removal, and various PCR settings. In total, 176 samples were subjected to 16S rRNA amplicon sequencing, and selected samples were investigated through metagenomics and metatranscriptomics. Quantitative fluorescence in situ hybridization was used as a DNA extraction-independent method for qualitative comparison. In general, an effect on the observed community was found on all parameters tested, although bead beating and primer choice had the largest effect. The effect of bead beating intensity correlated with cell-wall strength as seen by a large increase in DNA from Gram-positive bacteria (up to 400%). However, significant differences were present at lower phylogenetic levels within the same phylum, suggesting that additional factors are at play. The best primer set based on in silico analysis was found to underestimate a number of important bacterial groups. For 16S rRNA gene analysis in activated sludge we recommend using the FastDNA SPIN Kit for Soil with four times the normal bead beating and V1-3 primers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 April 2017
                2017
                : 8
                : 718
                Affiliations
                [1]Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University Aalborg, Denmark
                Author notes

                Edited by: Kartik Chandran, Columbia University, USA

                Reviewed by: Cindy J. Smith, University of Glasgow, UK; Jose M. Bruno-Barcena, North Carolina State University, USA

                *Correspondence: Per H. Nielsen, phn@ 123456bio.aau.dk

                These authors have contributed equally to this work.

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.00718
                5406452
                28496434
                99e001d6-0932-40e3-8d64-42653df98280
                Copyright © 2017 Stokholm-Bjerregaard, McIlroy, Nierychlo, Karst, Albertsen and Nielsen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 09 December 2016
                : 06 April 2017
                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 134, Pages: 18, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                16s rrna amplicon sequencing,accumulibacter,activated sludge,ebpr,gao,pao,micropruina,tetrasphaera

                Comments

                Comment on this article