69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Oxidative Stress and Lipid Peroxidation Products in Cancer Progression and Therapy

      review-article
      *
      ISRN Oncology
      International Scholarly Research Network

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The generation of reactive oxygen species (ROS) and an altered redox status are common biochemical aspects in cancer cells. ROS can react with the polyunsaturated fatty acids of lipid membranes and induce lipid peroxidation. The end products of lipid peroxidation, 4-hydroxynonenal (HNE), have been considered to be a second messenger of oxidative stress. Beyond ROS involvement in carcinogenesis, increased ROS level can inhibit tumor cell growth. Indeed, in tumors in advanced stages, a further increase of oxidative stress, such as that occurs when using several anticancer drugs and radiation therapy, can overcome the antioxidant defenses of cancer cells and drive them to apoptosis. High concentrations of HNE can also induce apoptosis in cancer cells. However, some cells escape the apoptosis induced by chemical or radiation therapy through the adaptation to intrinsic oxidative stress which confers drug resistance. This paper is focused on recent advances in the studies of the relation between oxidative stress, lipid peroxidation products, and cancer progression with particular attention to the pro-oxidant anticancer agents and the drug-resistant mechanisms, which could be modulated to obtain a better response to cancer therapy.

          Related collections

          Most cited references194

          • Record: found
          • Abstract: found
          • Article: not found

          Role of reactive oxygen species (ROS) in apoptosis induction.

          Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple.

            Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation.

              If cancer arises and is maintained by a small population of cancer-initiating cells within every tumor, understanding how these cells react to cancer treatment will facilitate improvement of cancer treatment in the future. Cancer-initiating cells can now be prospectively isolated from breast cancer cell lines and tumor samples and propagated as mammospheres in vitro under serum-free conditions. CD24(-/low)/CD44+ cancer-initiating cells were isolated from MCF-7 and MDA-MB-231 breast cancer monolayer cultures and propagated as mammospheres. Their response to radiation was investigated by assaying clonogenic survival and by measuring reactive oxygen species (ROS) levels, phosphorylation of the replacement histone H2AX, CD44 levels, CD24 levels, and Notch-1 activation using flow cytometry. All statistical tests were two-sided. Cancer-initiating cells were more resistant to radiation than cells grown as monolayer cultures (MCF-7: monolayer cultures, mean surviving fraction at 2 Gy [SF(2Gy)] = 0.2, versus mammospheres, mean SF(2Gy) = 0.46, difference = 0.26, 95% confidence interval [CI] = 0.05 to 0.47; P = .026; MDA-MB-231: monolayer cultures, mean SF(2Gy) = 0.5, versus mammospheres, mean SF(2Gy) = 0.69, difference = 0.19, 95% CI = -0.07 to 0.45; P = .09). Levels of ROS increased in both mammospheres and monolayer cultures after irradiation with a single dose of 10 Gy but were lower in mammospheres than in monolayer cultures (MCF-7 monolayer cultures: 0 Gy, mean = 1.0, versus 10 Gy, mean = 3.32, difference = 2.32, 95% CI = 0.67 to 3.98; P = .026; mammospheres: 0 Gy, mean = 0.58, versus 10 Gy, mean = 1.46, difference = 0.88, 95% CI = 0.20 to 1.56; P = .031); phosphorylation of H2AX increased in irradiated monolayer cultures, but no change was observed in mammospheres. Fractionated doses of irradiation increased activation of Notch-1 (untreated, mean = 10.7, versus treated, mean = 15.1, difference = 4.4, 95% CI = 2.7 to 6.1, P = .002) and the percentage of the cancer stem/initiating cells in the nonadherent cell population of MCF-7 monolayer cultures (untreated, mean = 3.52%, versus treated, mean = 7.5%, difference = 3.98%, 95% CI = 1.67% to 6.25%, P = .009). Breast cancer-initiating cells are a relatively radioresistant subpopulation of breast cancer cells and increase in numbers after short courses of fractionated irradiation. These findings offer a possible mechanism for the accelerated repopulation of tumor cells observed during gaps in radiotherapy.
                Bookmark

                Author and article information

                Journal
                ISRN Oncol
                ISRN Oncol
                ISRN.ONCOLOGY
                ISRN Oncology
                International Scholarly Research Network
                2090-5661
                2090-567X
                2012
                17 October 2012
                : 2012
                : 137289
                Affiliations
                Department of Medicine and Experimental Oncology, University of Turin, Corso Raffaello 30, 10125 Torino, Italy
                Author notes

                Academic Editors: P. Balaram, B. Fang, N. Fujimoto, and O. Hansen

                Article
                10.5402/2012/137289
                3483701
                23119185
                983ad59d-fa6c-4e3c-920e-712c66509bfb
                Copyright © 2012 Giuseppina Barrera.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 July 2012
                : 28 August 2012
                Categories
                Review Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article