1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chiral plasmonic sensing: From the perspective of light–matter interaction

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular chirality is represented as broken mirror symmetry in the structural orientation of constituent atoms and plays a pivotal role at every scale of nature. Since the discovery of the chiroptic property of chiral molecules, the characterization of molecular chirality is important in the fields of biology, physics, and chemistry. Over the centuries, the field of optical chiral sensing was based on chiral light–matter interactions between chiral molecules and polarized light. Starting from simple optics-based sensing, the utilization of plasmonic materials that could control local chiral light–matter interactions by squeezing light into molecules successfully facilitated chiral sensing into noninvasive, ultrasensitive, and accurate detection. In this Review, the importance of plasmonic materials and their engineering in chiral sensing are discussed based on the principle of chiral light–matter interactions and the theory of optical chirality and chiral perturbation; thus, this Review can serve as a milestone for the proper design and utilization of plasmonic nanostructures for improved chiral sensing.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Using circular dichroism spectra to estimate protein secondary structure.

          Circular dichroism (CD) is an excellent tool for rapid determination of the secondary structure and folding properties of proteins that have been obtained using recombinant techniques or purified from tissues. The most widely used applications of protein CD are to determine whether an expressed, purified protein is folded, or if a mutation affects its conformation or stability. In addition, it can be used to study protein interactions. This protocol details the basic steps of obtaining and interpreting CD data, and methods for analyzing spectra to estimate the secondary structural composition of proteins. CD has the advantage that measurements may be made on multiple samples containing < or =20 microg of proteins in physiological buffers in a few hours. However, it does not give the residue-specific information that can be obtained by x-ray crystallography or NMR.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Plasmonics beyond the diffraction limit

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasmonic Surface Lattice Resonances: A Review of Properties and Applications

              When metal nanoparticles are arranged in an ordered array, they may scatter light to produce diffracted waves. If one of the diffracted waves then propagates in the plane of the array, it may couple the localized plasmon resonances associated with individual nanoparticles together, leading to an exciting phenomenon, the drastic narrowing of plasmon resonances, down to 1–2 nm in spectral width. This presents a dramatic improvement compared to a typical single particle resonance line width of >80 nm. The very high quality factors of these diffractively coupled plasmon resonances, often referred to as plasmonic surface lattice resonances, and related effects have made this topic a very active and exciting field for fundamental research, and increasingly, these resonances have been investigated for their potential in the development of practical devices for communications, optoelectronics, photovoltaics, data storage, biosensing, and other applications. In the present review article, we describe the basic physical principles and properties of plasmonic surface lattice resonances: the width and quality of the resonances, singularities of the light phase, electric field enhancement, etc. We pay special attention to the conditions of their excitation in different experimental architectures by considering the following: in-plane and out-of-plane polarizations of the incident light, symmetric and asymmetric optical (refractive index) environments, the presence of substrate conductivity, and the presence of an active or magnetic medium. Finally, we review recent progress in applications of plasmonic surface lattice resonances in various fields.
                Bookmark

                Author and article information

                Contributors
                Journal
                The Journal of Chemical Physics
                AIP Publishing
                0021-9606
                1089-7690
                February 14 2024
                February 14 2024
                February 14 2024
                February 08 2024
                February 14 2024
                : 160
                : 6
                Article
                10.1063/5.0178485
                97108c1e-3a6f-414a-b725-ab010989d7ec
                © 2024
                History

                Comments

                Comment on this article