32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calycosin attenuates dextran sulfate sodium (DSS)-induced experimental colitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective(s):

          Inflammatory bowel disease (IBD) results from dysregulation of intestinal mucosal immunity. It is an incurable disease that affects millions of people worldwide. Developing new strategies for the treatment of colitis has been a major challenge. Here, we report the effect of calycosin, a plant-derived flavonoid, in successfully managing colitis in murine model.

          Material and Methods:

          In vivo model of colitis was induced using 2.5% (w/v) dextran sodium sulfate (DSS, 36,000 to 50,000 Mw). Body weight and disease activity index (DAI) were evaluated every day. Hematoxylin-Eosin (H&E) staining was used to estimate the effect of calycosin on DSS-induced colon damage. The levels of proinflammatory genes and mRNA expression were determined using real-time PCR, whereas the proinflammatory cytokines were assessed with ELISA. The content of other parameters including myeloperoxidase (MPO), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were also evaluated. Western blot assay was further used to determine the effect of calycosin on both NF-κB and mitogen activated protein kinases (MAPK) pathways.

          Results:

          The results showed that calycosin prevented weight loss and shortening of the colon length, maintained an intact mucosa, increased GSH and SOD activities, and decreased MDA levels. The drug also significantly inhibited proinflammatory cytokine mRNA expression and decreased MPO activity. Additionally, it remarkably inhibited NF-κB pathway and c-Jun N-terminal kinase (JNK) phosphorylation with no effect on p38 and extracellular signal-regulated kinase (ERK1/2) phosphorylation levels in colon tissue.

          Conclusion:

          These findings revealed that calycosin successfully ameliorated the effect of DSS-induced colitis in mice, which could be associated with NF-κB and JNK pathway modulations.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Clinicopathologic study of dextran sulfate sodium experimental murine colitis.

          We undertook this study in order to fully characterize the clinical and histopathology features of the dextran sulfate sodium (DSS) model of experimental murine colitis and to discover the earliest histopathologic changes that lead to colitis. Acute colitis was induced in Swiss-Webster mice by 7 days of oral DSS with animals sacrificed daily. Chronic colitis was induced by: (a) 7 days of oral DSS followed by 7 days of H2O (for 1, 2, and 3 cycles) and (b) 7 days of oral DSS followed by 14 and 21 days of H2O. In each experimental group, the entire colons were examined histologically and correlated with clinical symptoms. Acute clinical symptoms (diarrhea and/or grossly bloody stool) were associated with the presence of erosions and inflammation. More importantly, the earliest histologic changes which predated clinical colitis was loss of the basal one-third of the crypt (day 3), which progressed with time to loss of the entire crypt resulting in erosions on day 5. The earliest changes were very focal and not associated with inflammation. Inflammation was a secondary phenomena and only became significant after erosions appeared. Animals treated with only 7 days of DSS followed by 14 and 21 days of H2O developed a chronic colitis with the following histologic features: areas of activity (erosions and inflammation), inactivity, crypt distortion, florid epithelial proliferation and possible dysplasia. These changes were similar to animals given 3 cycles of DSS. The clinical disease activity index correlated significantly with pathologic changes in both the acute and chronic phases of the disease. The mechanism of DSS colitis is presently unknown. However, the finding of crypt loss without proceeding or accompanying inflammation suggests that the initial insult is at the level of the epithelial cell with inflammation being a secondary phenomena. This may be a good model to study how early mucosal changes lead to inflammation and the biology of the colonic enterocyte. Chronic colitis induced after only 7 days of DSS may serve as a useful model to study the effects of pharmacologic agents in human inflammatory disease and mechanisms of perpetuation of inflammation. Finally, we believe that this model has the potential to study the dysplasia cancer sequence in inflammatory disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemically induced mouse models of intestinal inflammation.

            Animal models of intestinal inflammation are indispensable for our understanding of the pathogenesis of Crohn disease and ulcerative colitis, the two major forms of inflammatory bowel disease in humans. Here, we provide protocols for establishing murine 2,4,6-trinitro benzene sulfonic acid (TNBS)-, oxazolone- and both acute and chronic dextran sodium sulfate (DSS) colitis, the most widely used chemically induced models of intestinal inflammation. In the former two models, colitis is induced by intrarectal administration of the covalently reactive reagents TNBS/oxazolone, which are believed to induce a T-cell-mediated response against hapten-modified autologous proteins/luminal antigens. In the DSS model, mice are subjected several days to drinking water supplemented with DSS, which seems to be directly toxic to colonic epithelial cells of the basal crypts. The procedures for the hapten models of colitis and acute DSS colitis can be accomplished in about 2 weeks but the protocol for chronic DSS colitis takes about 2 months.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The MAPK signaling cascade.

              The transmission of extracellular signals into their intracellular targets is mediated by a network of interacting proteins that regulate a large number of cellular processes. Cumulative efforts from many laboratories over the past decade have allowed the elucidation of one such signaling mechanism, which involves activations of several membranal signaling molecules followed by a sequential stimulation of several cytoplasmic protein kinases collectively known as mitogen-activated protein kinase (MAPK) signaling cascade. Up to six tiers in this cascade contribute to the amplification and specificity of the transmitted signals that eventually activate several regulatory molecules in the cytoplasm and in the nucleus to initiate cellular processes such as proliferation, differentiation, and development. Moreover, because many oncogenes have been shown to encode proteins that transmit mitogenic signals upstream of this cascade, the MAPK pathway provides a simple unifying explanation for the mechanism of action of most, if not all, nonnuclear oncogenes. The pattern of MAPK cascade is not restricted to growth factor signaling and it is now known that signaling pathways initiated by phorbol esters, ionophors, heat shock, and ligands for seven transmembrane receptors use distinct MAPK cascades with little or no cross-reactivity between them. In this review we emphasize primarily the first MAPK cascade to be discovered that uses the MEK and ERK isoforms and describe their involvement in different cellular processes.
                Bookmark

                Author and article information

                Journal
                Iran J Basic Med Sci
                Iran J Basic Med Sci
                Iranian Journal of Basic Medical Sciences
                Mashhad University of Medical Sciences (Iran )
                2008-3866
                2008-3874
                September 2017
                : 20
                : 9
                : 1056-1062
                Affiliations
                [1 ]Department of Gastroenterology, the Affiliated Second Hospital of Zhengzhou University, Zhengzhou, 450014, China
                [2 ]Department of Gastroenterology, the Affiliated Fifth Hospital of Zhengzhou University, Zhengzhou, 450014, China
                Author notes
                [* ] Corresponding author: Pengyuan Zheng. Department of Gastroenterology, the Affiliated Fifth Hospital of Zhengzhou University, Zhengzhou, 450014, China. Tel: 86-371-63585996; Fax: 86-371-63585996; email: zhengpengyuandr@ 123456126.com
                Article
                IJBMS-20-1056
                10.22038/IJBMS.2017.9276
                5651460
                95eafac2-b838-4ba2-a23f-324cc1b6cc24
                Copyright: © Iranian Journal of Basic Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 November 2016
                : 25 May 2017
                Categories
                Original Article

                colitis,calycosin,free radical,inflammatory cell,nf-κb,signaling pathway

                Comments

                Comment on this article