9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A gateway cloning vector set for high-throughput functional analysis of genes in planta.

      Plant physiology
      American Society of Plant Biologists (ASPB)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current challenge, now that two plant genomes have been sequenced, is to assign a function to the increasing number of predicted genes. In Arabidopsis, approximately 55% of genes can be assigned a putative function, however, less than 8% of these have been assigned a function by direct experimental evidence. To identify these functions, many genes will have to undergo comprehensive analyses, which will include the production of chimeric transgenes for constitutive or inducible ectopic expression, for antisense or dominant negative expression, for subcellular localization studies, for promoter analysis, and for gene complementation studies. The production of such transgenes is often hampered by laborious conventional cloning technology that relies on restriction digestion and ligation. With the aim of providing tools for high throughput gene analysis, we have produced a Gateway-compatible Agrobacterium sp. binary vector system that facilitates fast and reliable DNA cloning. This collection of vectors is freely available, for noncommercial purposes, and can be used for the ectopic expression of genes either constitutively or inducibly. The vectors can be used for the expression of protein fusions to the Aequorea victoria green fluorescent protein and to the beta-glucuronidase protein so that the subcellular localization of a protein can be identified. They can also be used to generate promoter-reporter constructs and to facilitate efficient cloning of genomic DNA fragments for complementation experiments. All vectors were derived from pCambia T-DNA cloning vectors, with the exception of a chemically inducible vector, for Agrobacterium sp.-mediated transformation of a wide range of plant species.

          Related collections

          Author and article information

          Journal
          10.1104/pp.103.027979
          523872
          14555774

          Comments

          Comment on this article

          scite_