37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Glia in the Peripheral and Central Auditory System Following Noise Overexposure: Contribution of TNF-α and IL-1β to the Pathogenesis of Hearing Loss

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Repeated noise exposure induces inflammation and cellular adaptations in the peripheral and central auditory system resulting in pathophysiology of hearing loss. In this study, we analyzed the mechanisms by which noise-induced inflammatory-related events in the cochlea activate glial-mediated cellular responses in the cochlear nucleus (CN), the first relay station of the auditory pathway. The auditory function, glial activation, modifications in gene expression and protein levels of inflammatory mediators and ultrastructural changes in glial-neuronal interactions were assessed in rats exposed to broadband noise (0.5–32 kHz, 118 dB SPL) for 4 h/day during 4 consecutive days to induce long-lasting hearing damage. Noise-exposed rats developed a permanent threshold shift which was associated with hair cell loss and reactive glia. Noise-induced microglial activation peaked in the cochlea between 1 and 10D post-lesion; their activation in the CN was more prolonged reaching maximum levels at 30D post-exposure. RT-PCR analyses of inflammatory-related genes expression in the cochlea demonstrated significant increases in the mRNA expression levels of pro- and anti-inflammatory cytokines, inducible nitric oxide synthase, intercellular adhesion molecule and tissue inhibitor of metalloproteinase-1 at 1 and 10D post-exposure. In noise-exposed cochleae, interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) were upregulated by reactive microglia, fibrocytes, and neurons at all time points examined. In the CN, however, neurons were the sole source of these cytokines. These observations suggest that noise exposure causes peripheral and central inflammatory reactions in which TNF-α and IL-1β are implicated in regulating the initiation and progression of noise-induced hearing loss.

          Related collections

          Most cited references103

          • Record: found
          • Abstract: found
          • Article: not found

          Transforming growth factor-beta regulation of immune responses.

          Transforming growth factor-beta (TGF-beta) is a potent regulatory cytokine with diverse effects on hemopoietic cells. The pivotal function of TGF-beta in the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis, activation, and survival of lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. The regulatory activity of TGF-beta is modulated by the cell differentiation state and by the presence of inflammatory cytokines and costimulatory molecules. Collectively, TGF-beta inhibits the development of immunopathology to self or nonharmful antigens without compromising immune responses to pathogens. This review highlights the findings that have advanced our understanding of TGF-beta in the immune system and in disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glia and their cytokines in progression of neurodegeneration.

            A glia-mediated, inflammatory immune response is an important component of the neuropathophysiology of Alzheimer's disease, of the midlife neurodegeneration of Down's syndrome, and of other age-related neurodegenerative conditions. All of these conditions are associated with early and often dramatic activation of, and cytokine overexpression in, microglia and astrocytes, sometimes decades before pathological changes consistent with a diagnosis of Alzheimer's disease are apparent, as in patients with Down's syndrome or head injury. Brains of normal elderly individuals also often show Alzheimer-type neuropathological changes, although to a lesser degree than those seen in Alzheimer's disease itself. These normal age-related glial changes, likely a response to the normal wear and tear of the aging process, raise the threshold of glial activation and thus may explain the fact that even genetically determined Alzheimer's disease, resulting from genetic mutations such as those in beta-amyloid precursor protein and presenilins or from genetic duplication such as of chromosome 21, only shows the full manifestation of the disease decades after birth. In the more common sporadic form of Alzheimer's disease, age-related increases in glial activation and expression of cytokines may act in synergy with other genetic and acquired environmental risks to culminate in the development of disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of noise-induced cellular injury and repair in the mouse cochlea.

              To assess the dynamics of noise-induced tissue injury and repair, groups of CBA/CaJ mice were exposed to an octave-band noise for 2 hours at levels of 94, 100, 106, 112, or 116 dB SPL and evaluated at survival times of 0, 12, 24 hours or 1, 2, or 8 weeks. Functional change, assessed via auditory brainstem response (ABR), ranged from a reversible threshold shift (at 94 dB) to a profound permanent loss (at 116 dB). Light microscopic histopathology was assessed in serial thick plastic sections and involved quantitative evaluation of most major cell types within the cochlear duct, including hair cells (and their stereocilia), supporting cells, ganglion cells, spiral ligament fibrocytes, spiral limbus fibrocytes, and the stria vascularis. Morphometry allowed patterns of damage to be systematically assessed as functions of (1) cochlear location, (2) exposure level, and (3) postexposure survival. Insights into mechanisms of acute and chronic noise-induced cellular damage are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                23 February 2017
                2017
                : 11
                : 9
                Affiliations
                [1] 1Instituto de Investigación en Discapacidades Neurológicas Albacete, Spain
                [2] 2Facultad de Medicina, Universidad de Castilla-La Mancha Albacete, Spain
                [3] 3Center for Hearing and Communication Research and Department of Clinical Neuroscience, Karolinska Institutet Stockholm, Sweden
                [4] 4Kresge Hearing Research Institute, University of Michigan Ann Arbor, MI, USA
                Author notes

                Edited by: Yun-Qing Li, Fourth Military Medical University, China

                Reviewed by: Masato Fujioka, Keio University, Japan; Joan S. Baizer, University at Buffalo, USA

                *Correspondence: Verónica Fuentes-Santamaria veronica.fuentes@ 123456uclm.es
                Article
                10.3389/fnana.2017.00009
                5322242
                28280462
                91c59530-0621-4bbc-8873-021c8cb58c71
                Copyright © 2017 Fuentes-Santamaría, Alvarado, Melgar-Rojas, Gabaldón-Ull, Miller and Juiz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 December 2016
                : 09 February 2017
                Page count
                Figures: 15, Tables: 0, Equations: 2, References: 118, Pages: 26, Words: 14144
                Categories
                Neuroscience
                Original Research

                Neurosciences
                inflammation,cochlear nucleus,inner ear,cytokines,auditory system
                Neurosciences
                inflammation, cochlear nucleus, inner ear, cytokines, auditory system

                Comments

                Comment on this article