9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exendin-4 affects calcium signalling predominantly during activation and activity of beta cell networks in acute mouse pancreas tissue slices

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tight control of beta cell stimulus-secretion coupling is crucial for maintaining homeostasis of energy-rich nutrients. While glucose serves as a primary regulator of this process, incretins augment beta cell function, partly by enhancing cytosolic [Ca 2+] dynamics. However, the details of how precisely they affect beta cell recruitment during activation, their active time, and functional connectivity during plateau activity, and how they influence beta cell deactivation remain to be described. Performing functional multicellular Ca 2+ imaging in acute mouse pancreas tissue slices enabled us to systematically assess the effects of the GLP-1 receptor agonist exendin-4 (Ex-4) simultaneously in many coupled beta cells with high resolution. In otherwise substimulatory glucose, Ex-4 was able to recruit approximately a quarter of beta cells into an active state. Costimulation with Ex-4 and stimulatory glucose shortened the activation delays and accelerated beta cell activation dynamics. More specifically, active time increased faster, and the time required to reach half-maximal activation was effectively halved in the presence of Ex-4. Moreover, the active time and regularity of [Ca 2+] IC oscillations increased, especially during the first part of beta cell response. In contrast, subsequent addition of Ex-4 to already active cells did not significantly enhance beta cell activity. Network analyses further confirmed increased connectivity during activation and activity in the presence of Ex-4, with hub cell roles remaining rather stable in both control experiments and experiments with Ex-4. Interestingly, Ex-4 demonstrated a biphasic effect on deactivation, slightly prolonging beta cell activity at physiological concentrations and shortening deactivation delays at supraphysiological concentrations. In sum, costimulation by Ex-4 and glucose increases [Ca 2+] IC during beta cell activation and activity, indicating that the effect of incretins may, to an important extent, be explained by enhanced [Ca 2+] IC signals. During deactivation, previous incretin stimulation does not critically prolong cellular activity, which corroborates their low risk of hypoglycemia.

          Related collections

          Most cited references140

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs

          Effect sizes are the most important outcome of empirical studies. Most articles on effect sizes highlight their importance to communicate the practical significance of results. For scientists themselves, effect sizes are most useful because they facilitate cumulative science. Effect sizes can be used to determine the sample size for follow-up studies, or examining effects across studies. This article aims to provide a practical primer on how to calculate and report effect sizes for t-tests and ANOVA's such that effect sizes can be used in a-priori power analyses and meta-analyses. Whereas many articles about effect sizes focus on between-subjects designs and address within-subjects designs only briefly, I provide a detailed overview of the similarities and differences between within- and between-subjects designs. I suggest that some research questions in experimental psychology examine inherently intra-individual effects, which makes effect sizes that incorporate the correlation between measures the best summary of the results. Finally, a supplementary spreadsheet is provided to make it as easy as possible for researchers to incorporate effect size calculations into their workflow.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)

            The American Diabetes Association and the European Association for the Study of Diabetes have briefly updated their 2018 recommendations on management of hyperglycemia, based on important research findings from large cardiovascular outcomes trials published in 2019. Important changes include: 1) the decision to treat high-risk individuals with a glucagon-like peptide 1 (GLP-1) receptor agonist or sodium–glucose cotransporter 2 (SGLT2) inhibitor to reduce major adverse cardiovascular events (MACE), hospitalization for heart failure (hHF), cardiovascular death, or chronic kidney disease (CKD) progression should be considered independently of baseline HbA1c or individualized HbA1c target; 2) GLP-1 receptor agonists can also be considered in patients with type 2 diabetes without established cardiovascular disease (CVD) but with the presence of specific indicators of high risk; and 3) SGLT2 inhibitors are recommended in patients with type 2 diabetes and heart failure, particularly those with heart failure with reduced ejection fraction, to reduce hHF, MACE, and CVD death, as well as in patients with type 2 diabetes with CKD (estimated glomerular filtration rate 30 to ≤60 mL min–1 [1.73 m]–2 or urinary albumin-to-creatinine ratio >30 mg/g, particularly >300 mg/g) to prevent the progression of CKD, hHF, MACE, and cardiovascular death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art

              Background GLP-1 receptor agonists (GLP-1 RAs) with exenatide b.i.d. first approved to treat type 2 diabetes in 2005 have been further developed to yield effective compounds/preparations that have overcome the original problem of rapid elimination (short half-life), initially necessitating short intervals between injections (twice daily for exenatide b.i.d.). Scope of review To summarize current knowledge about GLP-1 receptor agonist. Major conclusions At present, GLP-1 RAs are injected twice daily (exenatide b.i.d.), once daily (lixisenatide and liraglutide), or once weekly (exenatide once weekly, dulaglutide, albiglutide, and semaglutide). A daily oral preparation of semaglutide, which has demonstrated clinical effectiveness close to the once-weekly subcutaneous preparation, was recently approved. All GLP-1 RAs share common mechanisms of action: augmentation of hyperglycemia-induced insulin secretion, suppression of glucagon secretion at hyper- or euglycemia, deceleration of gastric emptying preventing large post-meal glycemic increments, and a reduction in calorie intake and body weight. Short-acting agents (exenatide b.i.d., lixisenatide) have reduced effectiveness on overnight and fasting plasma glucose, but maintain their effect on gastric emptying during long-term treatment. Long-acting GLP-1 RAs (liraglutide, once-weekly exenatide, dulaglutide, albiglutide, and semaglutide) have more profound effects on overnight and fasting plasma glucose and HbA 1c , both on a background of oral glucose-lowering agents and in combination with basal insulin. Effects on gastric emptying decrease over time (tachyphylaxis). Given a similar, if not superior, effectiveness for HbA 1c  reduction with additional weight reduction and no intrinsic risk of hypoglycemic episodes, GLP-1RAs are recommended as the preferred first injectable glucose-lowering therapy for type 2 diabetes, even before insulin treatment. However, GLP-1 RAs can be combined with (basal) insulin in either free- or fixed-dose preparations. More recently developed agents, in particular semaglutide, are characterized by greater efficacy with respect to lowering plasma glucose as well as body weight. Since 2016, several cardiovascular (CV) outcome studies have shown that GLP-1 RAs can effectively prevent CV events such as acute myocardial infarction or stroke and associated mortality. Therefore, guidelines particularly recommend treatment with GLP-1 RAs in patients with pre-existing atherosclerotic vascular disease (for example, previous CV events). The evidence of similar effects in lower-risk subjects is not quite as strong. Since sodium/glucose cotransporter-2 (SGLT-2) inhibitor treatment reduces CV events as well (with the effect mainly driven by a reduction in heart failure complications), the individual risk of ischemic or heart failure complications should guide the choice of treatment. GLP-1 RAs may also help prevent renal complications of type 2 diabetes. Other active research areas in the field of GLP-1 RAs are the definition of subgroups within the type 2 diabetes population who particularly benefit from treatment with GLP-1 RAs. These include pharmacogenomic approaches and the characterization of non-responders. Novel indications for GLP-1 RAs outside type 2 diabetes, such as type 1 diabetes, neurodegenerative diseases, and psoriasis, are being explored. Thus, within 15 years of their initial introduction, GLP-1 RAs have become a well-established class of glucose-lowering agents that has the potential for further development and growing impact for treating type 2 diabetes and potentially other diseases. • The GLP-1 receptor agonists class comprises seven compounds/preparations with a similar mode of action. • GLP-1 receptor agonists differ with respect to pharmacokinetic properties, duration of action, and clinical effectiveness. • Plasma glucose is lowered by effects on insulin and glucagon secretion, and by decelerating gastric emptying. • GLP-1 receptor agonists lower body weight by their influence on the central nervous system. • GLP-1 R reduce cardiovascular events (myocardial infarction, stroke, and associated mortality).
                Bookmark

                Author and article information

                Contributors
                URI : https://loop.frontiersin.org/people/2540176Role: Role: Role: Role: Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1988794Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1682682Role: Role: Role:
                URI : https://loop.frontiersin.org/people/773789Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1102007Role: Role: Role:
                URI : https://loop.frontiersin.org/people/1105923Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/423568Role: Role: Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/509516Role: Role: Role: Role: Role: Role: Role: Role: Role: Role: Role:
                URI : https://loop.frontiersin.org/people/741436Role: Role: Role: Role: Role: Role: Role: Role: Role: Role:
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                16 January 2024
                2023
                : 14
                : 1315520
                Affiliations
                [1] 1 Institute of Physiology, Faculty of Medicine, University of Maribor , Maribor, Slovenia
                [2] 2 Center for Physiology and Pharmacology, Medical University of Vienna , Vienna, Austria
                [3] 3 Alma Mater Europaea-European Center Maribor , Maribor, Slovenia
                [4] 4 Faculty of Natural Sciences and Mathematics, University of Maribor , Maribor, Slovenia
                Author notes

                Edited by: Quan Zhang, University of Oxford, United Kingdom

                Reviewed by: Andrei I. Tarasov, Ulster University, United Kingdom

                Arthur Sherman, National Institutes of Health (NIH), United States

                *Correspondence: Andraž Stožer, andraz.stozer@ 123456um.si
                Article
                10.3389/fendo.2023.1315520
                10826511
                38292770
                90cce2c3-dd10-4b70-bcc9-fd08937dab60
                Copyright © 2024 Paradiž Leitgeb, Kerčmar, Križančić Bombek, Pohorec, Skelin Klemen, Slak Rupnik, Gosak, Dolenšek and Stožer

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 October 2023
                : 22 December 2023
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 140, Pages: 17, Words: 10254
                Funding
                Funded by: Javna Agencija za Raziskovalno Dejavnost RS , doi 10.13039/501100004329;
                Award ID: P3-0396 , I0-0029, J3-9289, N3-0170, J3-2525, J3-3077 , N3-0133
                The author(s) declare financial support was received for the research, authorship, and/or publication of this article. The work presented in this study was financially supported by the Slovenian Research Agency (research core funding nos. P3-0396 and I0-0029, as well as research projects nos. J3-9289, N3-0170, J3-2525, J3-3077 and N3-0133).
                Categories
                Endocrinology
                Original Research
                Custom metadata
                Systems Endocrinology

                Endocrinology & Diabetes
                pancreas,tissue slice,beta cell,calcium imaging,exendin-4,incretin effect,connectivity

                Comments

                Comment on this article