327
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plk1 Self-Organization and Priming Phosphorylation of HsCYK-4 at the Spindle Midzone Regulate the Onset of Division in Human Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Self-regulated movement of Polo-like kinase 1 to the midzone of the mitotic spindle initiates a local signaling cascade that activates the cell division machinery at the cell's equator.

          Abstract

          Animal cells initiate cytokinesis in parallel with anaphase onset, when an actomyosin ring assembles and constricts through localized activation of the small GTPase RhoA, giving rise to a cleavage furrow. Furrow formation relies on positional cues provided by anaphase spindle microtubules (MTs), but how such cues are generated remains unclear. Using chemical genetics to achieve both temporal and spatial control, we show that the self-organized delivery of Polo-like kinase 1 (Plk1) to the midzone and its local phosphorylation of a MT-bound substrate are critical for generating this furrow-inducing signal. When Plk1 was active but unable to target itself to this equatorial landmark, both cortical RhoA recruitment and furrow induction failed to occur, thus recapitulating the effects of anaphase-specific Plk1 inhibition. Using tandem mass spectrometry and phosphospecific antibodies, we found that Plk1 binds and directly phosphorylates the HsCYK-4 subunit of centralspindlin (also known as MgcRacGAP) at the midzone. At serine 157, this modification creates a major docking site for the tandem BRCT repeats of the Rho GTP exchange factor Ect2. Cells expressing only a nonphosphorylatable form of HsCYK-4 failed to localize Ect2 at the midzone and were severely impaired in cleavage furrow formation, implying that HsCYK-4 is Plk1's rate-limiting target upstream of RhoA. Conversely, tethering an inhibitor-resistant allele of Plk1 to HsCYK-4 allowed furrows to form despite global inhibition of all other Plk1 molecules in the cell. Our findings illuminate two key mechanisms governing the initiation of cytokinesis in human cells and illustrate the power of chemical genetics to probe such regulation both in time and space.

          Author Summary

          During mitosis, the separation of duplicated chromosomes and subsequent cytokinesis (cell division) are tightly coupled processes. Cytokinesis must occur not only after chromosomes have separated but also in the physical space between the chromosomes, so that each daughter cell inherits the appropriate genetic material. The mechanisms responsible for this cellular choreography are poorly understood, however. We used chemical genetics to dissect the role of a key regulator of cell division, Polo-like kinase 1 (Plk1) in human cells. We show that, contrary to previous models, the ability of Plk1 to seek out microtubules that lie between the separated chromosomes (so-called midzone microtubules) provides the cell with an affirmative command to divide. Once assembled at this landmark, Plk1 phosphorylates HsCYK-4, a component of the centralspindlin complex (so named because it assembles at the spindle midzone) and enables binding between HsCYK-4 and Ect2, another regulator of cell division. Bound Ect2 then communicates with the machinery that assembles the actin- and myosin-based contractile ring, leading to division of the cell into two daughters. Our work therefore reveals new insights into how Plk1 temporally and spatially orchestrates division of human cells.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1.

          CDK1 is a nonredundant cyclin-dependent kinase (CDK) with an essential role in mitosis, but its multiple functions still are poorly understood at a molecular level. Here we identify a selective small-molecule inhibitor of CDK1 that reversibly arrests human cells at the G(2)/M border of the cell cycle and allows for effective cell synchronization in early mitosis. Inhibition of CDK1 during cell division revealed that its activity is necessary and sufficient for maintaining the mitotic state of the cells, preventing replication origin licensing and premature cytokinesis. Although CDK1 inhibition for up to 24 h is well tolerated, longer exposure to the inhibitor induces apoptosis in tumor cells, suggesting that selective CDK1 inhibitors may have utility in cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability.

            Cell signaling systems that contain positive-feedback loops or double-negative feedback loops can, in principle, convert graded inputs into switch-like, irreversible responses. Systems of this sort are termed "bistable". Recently, several groups have engineered artificial bistable systems into Escherichia coli and Saccharomyces cerevisiae, and have shown that the systems exhibit interesting and potentially useful properties. In addition, two naturally occurring signaling systems, the p42 mitogen-activated protein kinase and c-Jun amino-terminal kinase pathways in Xenopus oocytes, have been shown to exhibit bistable responses. Here we review the basic properties of bistable circuits, the requirements for construction of a satisfactory bistable switch, and the recent progress towards constructing and analysing bistable signaling systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo.

              Fine-mapping of the cell-division cycle, notably the identification of mitotic kinase signaling pathways, provides novel opportunities for cancer-drug discovery. As a key regulator of multiple steps during mitotic progression across eukaryotic species, the serine/threonine-specific Polo-like kinase 1 (Plk1) is highly expressed in malignant cells and serves as a negative prognostic marker in specific human cancer types . Here, we report the discovery of a potent small-molecule inhibitor of mammalian Plk1, BI 2536, which inhibits Plk1 enzyme activity at low nanomolar concentrations. The compound potently causes a mitotic arrest and induces apoptosis in human cancer cell lines of diverse tissue origin and oncogenome signature. BI 2536 inhibits growth of human tumor xenografts in nude mice and induces regression of large tumors with well-tolerated intravenous dose regimens. In treated tumors, cells arrest in prometaphase, accumulate phosphohistone H3, and contain aberrant mitotic spindles. This mitotic arrest is followed by a surge in apoptosis, detectable by immunohistochemistry and noninvasive optical and magnetic resonance imaging. For addressing the therapeutic potential of Plk1 inhibition, BI 2536 has progressed into clinical studies in patients with locally advanced or metastatic cancers.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                May 2009
                May 2009
                26 May 2009
                : 7
                : 5
                : e1000111
                Affiliations
                [1 ]Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [2 ]Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [3 ]Departments of Biology and Biological Engineering, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
                [4 ]Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
                [5 ]Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California, United States of America
                [6 ]Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States of America
                Dana-Farber Cancer Institute, United States of America
                Author notes

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: MB MBY PVJ. Performed the experiments: MB JM VR-B DL KC. Analyzed the data: MB JM VR-B DL KC PVJ. Contributed reagents/materials/analysis tools: MR CZ KMS SC. Wrote the paper: PVJ.

                [¤]

                Current address: Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America

                Article
                08-PLBI-RA-3114R3
                10.1371/journal.pbio.1000111
                2680336
                19468302
                8f1a645c-0112-46e1-b88c-78573ae43447
                Burkard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 July 2008
                : 31 March 2009
                Page count
                Pages: 16
                Categories
                Research Article
                Cell Biology/Cell Growth and Division
                Cell Biology/Chemical Biology of the Cell

                Life sciences
                Life sciences

                Comments

                Comment on this article