1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Tuning and transferring slow photons from TiO2 photonic crystals to BiVO4 nanoparticles for unprecedented visible light photocatalysis

      , , , , ,
      Journal of Colloid and Interface Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" class="first" dir="auto" id="d2189227e125">Periodic structures with alternating refractive indices such as inverse opal photonic crystals are capable of reducing the group velocity of light such that this slowed light can be more efficiently harvested for highly enhanced solar energy conversion. However, the generation, the manipulation and, in particular, the practical applications of these slow photons remain highly challenging. Here, we report the first proof of concept on the ability to control, in an inverse opal TiO2-BiVO4 hetero-composite, the transfer of slow photons generated from the inverse opal photonic structure to the photocatalytically active BiVO4 nanoparticles for highly enhanced visible light photoconversion. Tuning the slow photon frequencies, in order to accommodate the electronic band gap of BiVO4 for slow photon transfer and for significantly improved light harvesting, was successfully achieved by varying the structural periodicity (pore size) of inverse opal and the light incidence angle. The photocatalytic activity of BiVO4 in all inverse opal structures, promoted by slow photon effect, reached up to 7 times higher than those in the non-structured compact films. This work opens new avenues for the practical utilization of slow photon effect under visible light in photocatalytic energy-related applications like water splitting and carbon dioxide reduction and in photovoltaics. </p>

          Related collections

          Author and article information

          Journal
          Journal of Colloid and Interface Science
          Journal of Colloid and Interface Science
          Elsevier BV
          00219797
          March 2023
          March 2023
          : 634
          : 290-299
          Article
          10.1016/j.jcis.2022.12.033
          36535165
          8d5a96ad-8051-44c4-aaae-30463688458a
          © 2023

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://doi.org/10.15223/policy-017

          https://doi.org/10.15223/policy-037

          https://doi.org/10.15223/policy-012

          https://doi.org/10.15223/policy-029

          https://doi.org/10.15223/policy-004

          History

          Comments

          Comment on this article