1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      First-principles study of structural, elastic, optoelectronic and thermoelectric properties of B-site-ordered quadruple perovskite Ba4Bi3NaO12

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential

            A modified version of the exchange potential proposed by Becke and Johnson [J. Chem. Phys. 124, 221101 (2006)10.1063/1.2213970] is tested on solids for the calculation of band gaps. The agreement with experiment is very good for all types of solids we considered (e.g., wide band gap insulators, sp semiconductors, and strongly correlated 3d transition-metal oxides) and is of the same order as the agreement obtained with the hybrid functionals or the GW methods. This semilocal exchange potential, which recovers the local-density approximation (LDA) for a constant electron density, mimics very well the behavior of orbital-dependent potentials and leads to calculations which are barely more expensive than LDA calculations. Therefore, it can be applied to very large systems in an efficient way.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Universal elastic anisotropy index.

              Practically all elastic single crystals are anisotropic, which calls for an appropriate universal measure to quantify the extent of anisotropy. A review of the existing anisotropy measures in the literature leads to a conclusion that they lack universality in the sense that they are non-unique and ignore contributions from the bulk part of the elastic stiffness (or compliance) tensor. Proceeding from extremal principles of elasticity, we introduce a new universal anisotropy index that overcomes the above limitations. Furthermore, we establish special relationships between the proposed anisotropy index and the existing anisotropy measures for special cases. A new elastic anisotropy diagram is constructed for over 100 different crystals (from cubic through triclinic), demonstrating that the proposed anisotropy measure is applicable to all types of elastic single crystals, and thus fills an important void in the existing literature.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Solid State Chemistry
                Journal of Solid State Chemistry
                Elsevier BV
                00224596
                June 2023
                June 2023
                : 322
                : 123955
                Article
                10.1016/j.jssc.2023.123955
                84bacc08-f885-4a8e-8e34-515c32855f15
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article