5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investigation of the levels of circulating miR-29a, miR-122, sestrin 2 and inflammatory markers in obese children with/without type 2 diabetes: a case control study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim

          The present work investigated serum levels of miR-29a, miR-122 and sestrin2 in obese children with/without type-2-diabetes mellitus (T2DM), and their correlations with inflammatory, metabolic and anthropometric parameters.

          Methods

          The study included 298 children, divided into: G1 (control, n = 136), G2 (obese without diabetes, n = 90) and G3 (obese with T2DM, n = 72). Metabolic and anthropometric parameters, miR-29a, miR-122 relative expressions, and sestrin2, high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured by their specific methods. The data was processed and analyzed by SPSS V.26 using the corresponding tests. After testing the variables’ normality, Kruskal–Wallis one-way-ANOVA, Spearman correlations coefficient were used.

          Results

          Significant higher serum miR-29a, miR-122, IL-6, hsCRP and TNF-α and lower sestrin2 levels were found in G2 and G3 than G1 and in G3 than G2 (p= > 0.001 for all). Especially in G3, miR-29a and miR-122 levels correlated positively while sestrin2 levels correlated negatively with waist circumference and BMI percentiles, serum levels of LDL-cholesterol, triacylglycerol, total cholesterol, HbA1c%, glucose, insulin, c-peptide, homeostatic model assessment-insulin resistance (HOMA-IR), IL-6, hsCRP and TNF-α.

          Conclusion

          The change in the serum miR-29a, miR-122 and sestrin2 levels in obese children with/without T2DM may suggest a possible role of these biomarkers in the pathogenesis of childhood obesity and their accompanied complications e.g. inflammations and T2DM. Also, further studies are required to test drugs that antagonize the action miR-29a and miR-122 or upregulate sestrin2 in the management of these cases.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12902-021-00829-z.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults

          Summary Background Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. Methods We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5–19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5–19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). Findings Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (−0·01 kg/m2 per decade; 95% credible interval −0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69–1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64–1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (−0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50–1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4–1·2) in 1975 to 5·6% (4·8–6·5) in 2016 in girls, and from 0·9% (0·5–1·3) in 1975 to 7·8% (6·7–9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0–12·9) in 1975 to 8·4% (6·8–10·1) in 2016 in girls and from 14·8% (10·4–19·5) in 1975 to 12·4% (10·3–14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7–29·6) among girls and 30·7% (23·5–38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44–117) million girls and 117 (70–178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24–89) million girls and 74 (39–125) million boys worldwide were obese. Interpretation The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. Funding Wellcome Trust, AstraZeneca Young Health Programme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.

            The steady-state basal plasma glucose and insulin concentrations are determined by their interaction in a feedback loop. A computer-solved model has been used to predict the homeostatic concentrations which arise from varying degrees beta-cell deficiency and insulin resistance. Comparison of a patient's fasting values with the model's predictions allows a quantitative assessment of the contributions of insulin resistance and deficient beta-cell function to the fasting hyperglycaemia (homeostasis model assessment, HOMA). The accuracy and precision of the estimate have been determined by comparison with independent measures of insulin resistance and beta-cell function using hyperglycaemic and euglycaemic clamps and an intravenous glucose tolerance test. The estimate of insulin resistance obtained by homeostasis model assessment correlated with estimates obtained by use of the euglycaemic clamp (Rs = 0.88, p less than 0.0001), the fasting insulin concentration (Rs = 0.81, p less than 0.0001), and the hyperglycaemic clamp, (Rs = 0.69, p less than 0.01). There was no correlation with any aspect of insulin-receptor binding. The estimate of deficient beta-cell function obtained by homeostasis model assessment correlated with that derived using the hyperglycaemic clamp (Rs = 0.61, p less than 0.01) and with the estimate from the intravenous glucose tolerance test (Rs = 0.64, p less than 0.05). The low precision of the estimates from the model (coefficients of variation: 31% for insulin resistance and 32% for beta-cell deficit) limits its use, but the correlation of the model's estimates with patient data accords with the hypothesis that basal glucose and insulin interactions are largely determined by a simple feed back loop.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Obesity: global epidemiology and pathogenesis

              The prevalence of obesity has increased worldwide in the past ~50 years, reaching pandemic levels. Obesity represents a major health challenge because it substantially increases the risk of diseases such as type 2 diabetes mellitus, fatty liver disease, hypertension, myocardial infarction, stroke, dementia, osteoarthritis, obstructive sleep apnoea and several cancers, thereby contributing to a decline in both quality of life and life expectancy. Obesity is also associated with unemployment, social disadvantages and reduced socio-economic productivity, thus increasingly creating an economic burden. Thus far, obesity prevention and treatment strategies - both at the individual and population level - have not been successful in the long term. Lifestyle and behavioural interventions aimed at reducing calorie intake and increasing energy expenditure have limited effectiveness because complex and persistent hormonal, metabolic and neurochemical adaptations defend against weight loss and promote weight regain. Reducing the obesity burden requires approaches that combine individual interventions with changes in the environment and society. Therefore, a better understanding of the remarkable regional differences in obesity prevalence and trends might help to identify societal causes of obesity and provide guidance on which are the most promising intervention strategies.
                Bookmark

                Author and article information

                Contributors
                khalidmohany@aun.edu.eg
                Journal
                BMC Endocr Disord
                BMC Endocr Disord
                BMC Endocrine Disorders
                BioMed Central (London )
                1472-6823
                3 August 2021
                3 August 2021
                2021
                : 21
                : 152
                Affiliations
                [1 ]GRID grid.252487.e, ISNI 0000 0000 8632 679X, Department of Medical Biochemistry, College of Medicine, , Assiut University, ; P.O. Box, Assiut, 71515 Egypt
                [2 ]GRID grid.412602.3, ISNI 0000 0000 9421 8094, Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, , Qassim University, ; Unaizah, Saudi Arabia
                [3 ]GRID grid.412602.3, ISNI 0000 0000 9421 8094, Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, , Qassim University, ; Unaizah, Saudi Arabia
                [4 ]GRID grid.412602.3, ISNI 0000 0000 9421 8094, Department of Pediatrics, Unaizah College of Medicine and Medical Sciences, , Qassim University, ; Unaizah, Saudi Arabia
                Article
                829
                10.1186/s12902-021-00829-z
                8330040
                34344352
                82fa5d88-df39-40d4-bc35-d5851c0d6145
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 March 2021
                : 13 July 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Endocrinology & Diabetes
                mir-29a,mir-122,sestrin 2,childhood obesity,t2dm
                Endocrinology & Diabetes
                mir-29a, mir-122, sestrin 2, childhood obesity, t2dm

                Comments

                Comment on this article