211
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Telmisartan is a well-established angiotensin II type 1 receptor blocker that improves insulin sensitivity in animal models of obesity and insulin resistance, as well as in humans. Telmisartan has been reported to function as a partial agonist of the peroxisome proliferator-activated receptor (PPAR) γ, which is also targeted by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase (SIRT1). Here, we investigated the pathways through which telmisartan acts on skeletal muscle, in vitro as well as in vivo.

          Methods

          Nine-week-old male db/db mice were fed a 60% high-fat diet, with orally administrated either vehicle (carboxymethyl-cellulose, CMC), 5 mg/kg telmisartan, or 5 mg/kg telmisartan and 1 mg/kg GW9662, a selective irreversible antagonist of PPARγ, for 5 weeks. Effects of telmisartan on Sirt1 mRNA, AMPK phosphorylation, and NAD+/NADH ratio were determined in C2C12 cultured myocytes.

          Results and discussion

          Telmisartan treatment improved insulin sensitivity in obese db/db mice fed a high-fat diet and led to reduction in the size of hypertrophic pancreatic islets in these mice. Moreover, in vitro treatment with telmisartan led to increased expression of Sirt1 mRNA in C2C12 skeletal muscle cells; the increase in Sirt1 mRNA in telmisartan-treated C2C12 myoblasts occurred concomitantly with an increase in AMPK phosphorylation, an increase in NAD+/NADH ratio, and increases in the mRNA levels of PGC1α, FATP1, ACO, and GLUT4.

          Conclusions

          Our results indicate that telmisartan acts through a PPARγ-independent pathway, but at least partially exerts its effects by acting directly on skeletal muscle AMPK/SIRT1 pathways.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes.

          Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases of ageing such as type 2 diabetes. SIRT1, an NAD+-dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produce beneficial effects on glucose homeostasis and insulin sensitivity. Resveratrol, a polyphenolic SIRT1 activator, mimics the anti-ageing effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance, increases mitochondrial content, and prolongs survival. Here we describe the identification and characterization of small molecule activators of SIRT1 that are structurally unrelated to, and 1,000-fold more potent than, resveratrol. These compounds bind to the SIRT1 enzyme-peptide substrate complex at an allosteric site amino-terminal to the catalytic domain and lower the Michaelis constant for acetylated substrates. In diet-induced obese and genetically obese mice, these compounds improve insulin sensitivity, lower plasma glucose, and increase mitochondrial capacity. In Zucker fa/fa rats, hyperinsulinaemic-euglycaemic clamp studies demonstrate that SIRT1 activators improve whole-body glucose homeostasis and insulin sensitivity in adipose tissue, skeletal muscle and liver. Thus, SIRT1 activation is a promising new therapeutic approach for treating diseases of ageing such as type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Abnormal splicing of the leptin receptor in diabetic mice.

            Mutations in the mouse diabetes (db) gene result in obesity and diabetes in a syndrome resembling morbid human obesity. Previous data suggest that the db gene encodes the receptor for the obese (ob) gene product, leptin. A leptin receptor was recently cloned from choroid plexus and shown to map to the same 6-cM interval on mouse chromosome 4 as db. This receptor maps to the same 300-kilobase interval as db, and has at least six alternatively spliced forms. One of these splice variants is expressed at a high level in the hypothalamus, and is abnormally spliced in C57BL/Ks db/db mice. The mutant protein is missing the cytoplasmic region, and is likely to be defective in signal transduction. This suggests that the weight-reducing effects of leptin may be mediated by signal transduction through a leptin receptor in the hypothalamus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              SIRT1 transgenic mice show phenotypes resembling calorie restriction.

              We generated mice that overexpress the sirtuin, SIRT1. Transgenic mice have been generated by knocking in SIRT1 cDNA into the beta-actin locus. Mice that are hemizygous for this transgene express normal levels of beta-actin and higher levels of SIRT1 protein in several tissues. Transgenic mice display some phenotypes similar to mice on a calorie-restricted diet: they are leaner than littermate controls; are more metabolically active; display reductions in blood cholesterol, adipokines, insulin and fasted glucose; and are more glucose tolerant. Furthermore, transgenic mice perform better on a rotarod challenge and also show a delay in reproduction. Our findings suggest that increased expression of SIRT1 in mice elicits beneficial phenotypes that may be relevant to human health and longevity.
                Bookmark

                Author and article information

                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central
                1475-2840
                2012
                8 November 2012
                : 11
                : 139
                Affiliations
                [1 ]Department of Cardio-Diabetes Medicine, University of Tokushima Graduate School of Health Biosciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
                [2 ]Department of Cardiovascular Medicine, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan
                [3 ]Department of Nutrition and Metabolism, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan
                [4 ]Department of Cardiovascular Surgery, University of Tokushima Graduate School of Health Biosciences, Tokushima, Japan
                [5 ]Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
                [6 ]Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, University of the Ryukyus, Graduate School of Medicine, Okinawa, Japan
                Article
                1475-2840-11-139
                10.1186/1475-2840-11-139
                3527353
                23137106
                8262421a-0c36-4461-b89e-8966fb9471cf
                Copyright ©2012 Shiota et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 August 2012
                : 18 October 2012
                Categories
                Original Investigation

                Endocrinology & Diabetes
                obesity,sirt1,adiponectin,amp-activated protein kinase,peroxisome proliferator-activated receptor-γ

                Comments

                Comment on this article