2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor-Derived Exosomal Protein Tyrosine Phosphatase Receptor Type O Polarizes Macrophage to Suppress Breast Tumor Cell Invasion and Migration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor-derived exosomes, containing multiple nucleic acids and proteins, have been implicated to participate in the interaction between tumor cells and microenvironment. However, the functional involvement of phosphatases in tumor-derived exosomes is not fully understood. We and others previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) acts as a tumor suppressor in multiple cancer types. In addition, its role in tumor immune microenvironment remains elusive. Bioinformatical analyses revealed that PTPRO was closely associated with immune infiltration, and positively correlated to M1-like macrophages, but negatively correlated to M2-like macrophages in breast cancer tissues. Co-cultured with PTPRO-overexpressing breast cancer cells increased the proportion of M1-like tumor-associated macrophages (TAMs) while decreased that of M2-like TAMs. Further, we observed that tumor-derived exosomal PTPRO induced M1-like macrophage polarization, and regulated the corresponding functional phenotypes. Moreover, tumor cell-derived exosomal PTPRO inhibited breast cancer cell invasion and migration, and inactivated STAT signaling in macrophages. Our data suggested that exosomal PTPRO inhibited breast cancer invasion and migration by modulating macrophage polarization. Anti-tumoral effect of exosomal PTPRO was mediated by inactivating STAT family in macrophages. These findings highlight a novel mechanism of tumor invasion regulated by tumor-derived exosomal tyrosine phosphatase, which is of translational potential for the therapeutic strategy against breast cancer.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumour-associated macrophages as treatment targets in oncology

            Tumour-associated macrophages (TAMs) are key drivers of tumour-promoting inflammation and cancer progression, and are important determinants of responsiveness to a range of therapies. Herein, the authors summarize the roles of TAMs in cancer, and discuss the potential of TAM-targeted therapeutic strategies to complement and synergize with other anticancer treatments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET.

              Tumor-derived exosomes are emerging mediators of tumorigenesis. We explored the function of melanoma-derived exosomes in the formation of primary tumors and metastases in mice and human subjects. Exosomes from highly metastatic melanomas increased the metastatic behavior of primary tumors by permanently 'educating' bone marrow progenitors through the receptor tyrosine kinase MET. Melanoma-derived exosomes also induced vascular leakiness at pre-metastatic sites and reprogrammed bone marrow progenitors toward a pro-vasculogenic phenotype that was positive for c-Kit, the receptor tyrosine kinase Tie2 and Met. Reducing Met expression in exosomes diminished the pro-metastatic behavior of bone marrow cells. Notably, MET expression was elevated in circulating CD45(-)C-KIT(low/+)TIE2(+) bone marrow progenitors from individuals with metastatic melanoma. RAB1A, RAB5B, RAB7 and RAB27A, regulators of membrane trafficking and exosome formation, were highly expressed in melanoma cells. Rab27A RNA interference decreased exosome production, preventing bone marrow education and reducing, tumor growth and metastasis. In addition, we identified an exosome-specific melanoma signature with prognostic and therapeutic potential comprised of TYRP2, VLA-4, HSP70, an HSP90 isoform and the MET oncoprotein. Our data show that exosome production, transfer and education of bone marrow cells supports tumor growth and metastasis, has prognostic value and offers promise for new therapeutic directions in the metastatic process.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                28 September 2021
                2021
                : 9
                : 703537
                Affiliations
                [1] 1Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University , Guangzhou, China
                [2] 2Department of Hematology, University Medical Center Groningen, University of Groningen , Groningen, Netherlands
                [3] 3Graduate School, Shantou University Medical College , Shantou, China
                [4] 4Department of Thyroid, Breast and Hernia Surgery, The Second Affiliated Hospital of Shantou University Medical College , Shantou, China
                [5] 5Laboratory for Translational Surgical Oncology, Department of Surgery, University Medical Center Groningen, University of Groningen , Groningen, Netherlands
                [6] 6St George and Sutherland Clinical School, Faculty of Medicine, UNSW , Sydney, NSW, Australia
                [7] 7Cancer Care Centre, St George Hospital , Kogarah, NSW, Australia
                [8] 8School of Basic Medical Sciences, Zhengzhou University , Zhengzhou, China
                [9] 9Department of General Surgery, The First Affiliated Hospital of Jinan University , Guangzhou, China
                Author notes

                Edited by: Roger Chammas, University of São Paulo, Brazil

                Reviewed by: Alfonso Luque, Instituto de Salud Carlos III (ISCIII), Spain; Bruno Costa-Silva, Champalimaud Foundation, Portugal

                *Correspondence: Hao Zhang, haolabcancercenter@ 123456163.com

                These authors have contributed equally to this work

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2021.703537
                8505750
                34650968
                81ee8ddb-f31d-4b89-a60d-ecb7ab5f0632
                Copyright © 2021 Dong, Xie, Jiang, Li, Lin, Pang, Xiong, Zheng, Ke, Chen, Li and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 April 2021
                : 09 September 2021
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 52, Pages: 12, Words: 8071
                Categories
                Cell and Developmental Biology
                Original Research

                protein tyrosine phosphatase receptor type o,tumor-derived exosomes,macrophage polarization,breast cancer,invasion and migration

                Comments

                Comment on this article