19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/objectives

          Fasting dyslipidemia is commonly observed in insulin resistant states and mechanistically linked to hepatic overproduction of very low density lipoprotein (VLDL). Recently, the incretin hormone glucagon-like peptide-1 (GLP-1) has been implicated in ameliorating dyslipidemia associated with insulin resistance and reducing hepatic lipid stores. Given that hepatic VLDL production is a key determinant of circulating lipid levels, we investigated the role of both peripheral and central GLP-1 receptor (GLP-1R) agonism in regulation of VLDL production.

          Methods

          The fructose-fed Syrian golden hamster was employed as a model of diet-induced insulin resistance and VLDL overproduction. Hamsters were treated with the GLP-1R agonist exendin-4 by intraperitoneal (ip) injection for peripheral studies or by intracerebroventricular (ICV) administration into the 3rd ventricle for central studies. Peripheral studies were repeated in vagotomised hamsters.

          Results

          Short term (7–10 day) peripheral exendin-4 enhanced satiety and also prevented fructose-induced fasting dyslipidemia and hyperinsulinemia. These changes were accompanied by decreased fasting plasma glucose levels, reduced hepatic lipid content and decreased levels of VLDL-TG and -apoB100 in plasma. The observed changes in fasting dyslipidemia could be partially explained by reduced respiratory exchange ratio (RER) thereby indicating a switch in energy utilization from carbohydrate to lipid. Additionally, exendin-4 reduced mRNA markers associated with hepatic de novo lipogenesis and inflammation. Despite these observations, GLP-1R activity could not be detected in primary hamster hepatocytes, thus leading to the investigation of a potential brain–liver axis functioning to regulate lipid metabolism. Short term (4 day) central administration of exendin-4 decreased body weight and food consumption and further prevented fructose-induced hypertriglyceridemia. Additionally, the peripheral lipid-lowering effects of exendin-4 were negated in vagotomised hamsters implicating the involvement of parasympathetic signaling.

          Conclusion

          Exendin-4 prevents fructose-induced dyslipidemia and hepatic VLDL overproduction in insulin resistance through an indirect mechanism involving altered energy utilization, decreased hepatic lipid synthesis and also requires an intact parasympathetic signaling pathway.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem.

          Central administration of the preproglucagon-derived peptide glucagon-like peptide-1 significantly inhibits ingestion of food and water, and glucagon-like peptide-1 binding sites are present in a multitude of central areas involved in the regulation of ingestional behaviour. To evaluate further the neuroanatomical organization of central glucagon-like peptide-1 containing neuronal circuits with potential implications on ingestional behaviour, we carried out a series of experiments in the rat demonstrating the topographical sites of synthesis and processing of the preproglucagon precursor followed by a chromatographic analysis of the processed fragments. In situ hybridization histochemistry revealed that preproglucagon encoding messenger RNA was expressed in a single population of neurons in the caudal portion of the nucleus of the solitary tract. Gel chromatographic analysis of hypothalamic and brainstem tissue extracts revealed that the preproglucagon precursor is processed in a fashion similar to that seen in the small intestine, preferentially giving rise to glicentin, glucagon-like peptide-1 and glucagon-like peptide-2. This single brain site of glucagon-like peptide-1 synthesis was subsequently confirmed by immunohistochemical demonstration of glucagon-like peptide-1-immunoreactive perikarya in the central and caudal parts of the nucleus of the solitary tract. Numerous sites containing glucagon-like peptide-1 immunoreactive fibres were, however, discovered in the forebrain including hypothalamic, thalamic and cortical areas. The densest innervation by glucagon-like peptide-1 immunoreactive nerve fibres was seen in the hypothalamic dorsomedial and paraventricular nuclei, but numerous glucagon-like peptide-1 immunoreactive fibres were also seen throughout the periventricular strata of the third ventricle. Dual-labelling immunohistochemistry for tyrosine hydroxylase and glucagon-like peptide-1 gave no evidence for co-localization of catecholamines and glucagon-like peptide-1 in neurons of the lower brainstem. To identify neurons of the nucleus of the solitary tract that project to the hypothalamic paraventricular nucleus, the retrograde tracer FluoroGold was injected into this hypothalamic target and dual immunocytochemical identification of glucagon-like peptide-1 and tyrosine hydroxylase-positive neurons was performed on brainstem sections containing retrogradely labelled perikarya. From this experiment it was seen that many of the retrogradely labelled neurons in the central portion of the nucleus of the solitary tract are catecholaminergic, while none is glucagon-like peptide-1 immunoreactive. In contrast, most of the retrogradely labelled neurons of the caudal portion of the nucleus of the solitary tract contain glucagon-like peptide-1. These observations further substantiate that glucagon-like peptide-1 neurons of the solitary tract constitute a distinct non-catecholaminergic cell group which projects to many targets, one of which is the hypothalamic paraventricular nucleus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years.

            Exenatide, an incretin mimetic for adjunctive treatment of type 2 diabetes (T2DM), reduced hemoglobin A(1c) (A1C) and weight in clinical trials. The objective of this study was to evaluate the effects of > or = 3 years exenatide therapy on glycemic control, body weight, cardiometabolic markers, and safety. Patients from three placebo-controlled trials and their open-label extensions were enrolled into one open-ended, open-label clinical trial. Patients were randomized to twice daily (BID) placebo, 5 mug exenatide, or 10 mug exenatide for 30 weeks, followed by 5 mug exenatide BID for 4 weeks, then 10 mug exenatide BID for > or = 3 years of exenatide exposure. Patients continued metformin and/or sulfonylureas. 217 patients (64% male, age 58 +/- 10 years, weight 99 +/- 18 kg, BMI 34 +/- 5 kg/m(2), A1C 8.2 +/- 1.0% [mean +/- SD]) completed 3 years of exenatide exposure. Reductions in A1C from baseline to week 12 (-1.1 +/- 0.1% [mean +/- SEM]) were sustained to 3 years (-1.0 +/- 0.1%; p or = 3 years in T2DM patients resulted in sustained improvements in glycemic control, cardiovascular risk factors, and hepatic biomarkers, coupled with progressive weight reduction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE(-/-) mice.

              Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce lipid accumulation in peripheral tissues, attenuating atherosclerosis and hepatic steatosis in preclinical studies. We examined whether GLP-1R activation decreases atherosclerosis progression in high-fat diet-fed male ApoE(-/-) mice after administration of streptozotocin and treatment with the long-acting GLP-1R agonist taspoglutide administered once monthly vs. metformin in the drinking water for 12 wk. Taspoglutide did not reduce plaque area or lipid content in the aortic arch or abdominal aorta, and no significant change in aortic macrophage accumulation was detected after taspoglutide or metformin. In contrast, hepatic triglyceride levels were significantly reduced in livers from taspoglutide-treated mice. Both peripheral and intracerebroventricular administration of exendin-4 rapidly decreased plasma triglyceride levels in fasted mice, and taspoglutide therapy in ApoE(-/-) mice modulated the expression of hepatic genes controlling fatty acid uptake and oxidation. We were unable to detect expression of the entire Glp1r coding sequence in macrophages isolated from ApoE(-/-), C57BL/6, and IL10(-/-) mice. Similarly, Glp1r mRNA transcripts were not detected in RNA from isolated murine hepatocytes. Using Western blotting and tissue extracts from Glp1r(+/+) and Glp1r(-/-) mice, and cells transfected with a tagged murine GLP-1R cDNA, we could not validate the sensitivity and specificity of three different GLP-1R antisera commonly used for the detection of GLP-1R protein. Taken together, these findings illustrate divergent actions of GLP-1R agonists on atherosclerosis progression and accumulation of ectopic lipid in ApoE(-/-) mice and highlight the importance of indirect GLP-1R actions for the control of hepatic lipid accumulation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mol Metab
                Mol Metab
                Molecular Metabolism
                Elsevier
                2212-8778
                28 September 2014
                28 September 2014
                December 2014
                : 3
                : 9
                : 823-833
                Affiliations
                [1 ]Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
                [2 ]Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
                [3 ]Physiology and Experimental Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
                Author notes
                []Corresponding author. Molecular Structure and Function, The Hospital for Sick Children, 555 University Ave, Atrium Room 3652, Toronto, ON M5G 1X8, Canada. Tel.: +1 416 813 8682; fax: +1 416 813 6257. khosrow.adeli@ 123456sickkids.ca
                Article
                S2212-8778(14)00162-8
                10.1016/j.molmet.2014.09.005
                4264039
                25506548
                80cefe6b-bc0e-4072-882c-211a5c5c4fe6
                © 2014 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 25 August 2014
                : 7 September 2014
                : 11 September 2014
                Categories
                Original Article

                glucagon-like peptide-1 (glp-1),very low density lipoprotein (vldl),fasting dyslipidemia,insulin resistance,hepatic steatosis,incretin,apob100, apolipoproteinb100,ffa, free fatty acid,glp-1, glucagon-like peptide-1,glp-1r, glp-1 receptor,icv, intracerebroventricular,ip, intraperitoneal,rer, respiratory exchange ratio,t2d, type 2 diabetes,vldl, very low density lipoprotein

                Comments

                Comment on this article