1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flour beetles prefer corners over walls and are slowed down with increasing habitat complexity

      research-article
      , , ,
      Royal Society Open Science
      The Royal Society
      wall-following behaviour, habitat selection, movement ecology, obstacles, pest ecology, thigmotaxis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Movement affects all key behaviours in which animals engage, including dispersal and habitat use. The red flour beetle, known as a cosmopolitan pest of stored products, was the subject of our study. We examined whether the beetles preferred corners, walls or open areas, and how turns or obstacles in corridors delayed the beetles' arrival at a target cell. Beetles spent significantly more time in corners than expected by chance, while they spent considerably less time in open areas than expected. However, no significant difference was observed between areas with two or three surrounding walls. This could be attributed to the beetles' stronger attraction to corners than crevices or the insufficient proximity of the third wall to the other two. Movement through the corridor was delayed by turns or obstacles, expressed in arrival probabilities, arrival times, time in the corridor or movement speed. Obstacles on the corridor's perimeter had a stronger effect on the beetle movement than those in the corridor's centre owing to the beetles' tendency to follow walls. The research is important also for applied purposes, such as better understanding beetle movement, how to delay their arrival to new patches, and where to place traps.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          A movement ecology paradigm for unifying organismal movement research.

          Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. "Now we must consider in general the common reason for moving with any movement whatever." (Aristotle, De Motu Animalium, 4th century B.C.).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Energy landscapes shape animal movement ecology.

              The metabolic costs of animal movement have been studied extensively under laboratory conditions, although frequently these are a poor approximation of the costs of operating in the natural, heterogeneous environment. Construction of "energy landscapes," which relate animal locality to the cost of transport, can clarify whether, to what extent, and how movement properties are attributable to environmental heterogeneity. Although behavioral responses to aspects of the energy landscape are well documented in some fields (notably, the selection of tailwinds by aerial migrants) and scales (typically large), the principles of the energy landscape extend across habitat types and spatial scales. We provide a brief synthesis of the mechanisms by which environmentally driven changes in the cost of transport can modulate the behavioral ecology of animal movement in different media, develop example cost functions for movement in heterogeneous environments, present methods for visualizing these energy landscapes, and derive specific predictions of expected outcomes from individual- to population- and species-level processes. Animals modulate a suite of movement parameters (e.g., route, speed, timing of movement, and tortuosity) in relation to the energy landscape, with the nature of their response being related to the energy savings available. Overall, variation in movement costs influences the quality of habitat patches and causes nonrandom movement of individuals between them. This can provide spatial and/or temporal structure to a range of population- and species-level processes, ultimately including gene flow. Advances in animal-attached technology and geographic information systems are opening up new avenues for measuring and mapping energy landscapes that are likely to provide new insight into their influence in animal ecology.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Project administrationRole: SupervisionRole: Writing – original draft
                Role: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: Writing – review & editing
                Role: Data curationRole: Project administrationRole: Writing – review & editing
                Journal
                R Soc Open Sci
                R Soc Open Sci
                RSOS
                royopensci
                Royal Society Open Science
                The Royal Society
                2054-5703
                January 17, 2024
                January 2024
                January 17, 2024
                : 11
                : 1
                : 231667
                Affiliations
                School of Zoology, , The George S. Wise Faculty of Life Sciences, Tel Aviv University, , Tel Aviv 69978, Israel
                Author notes

                Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.7007830.

                Author information
                http://orcid.org/0000-0002-8506-7161
                Article
                rsos231667
                10.1098/rsos.231667
                10791520
                38234433
                7d1d351b-3bed-4a4c-89cb-46038791614f
                © 2024 The Authors.

                Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : November 4, 2023
                : December 19, 2023
                Categories
                1001
                14
                60
                Ecology, Conservation and Global Change Biology
                Research Articles

                wall-following behaviour,habitat selection,movement ecology,obstacles,pest ecology,thigmotaxis

                Comments

                Comment on this article