11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential Vulnerability of Oculomotor Versus Hypoglossal Nucleus During ALS: Involvement of PACAP

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Amyotrophic lateral sclerosis (ALS) is a progressive multifactorial disease characterized by the loss of motor neurons (MNs). Not all MNs undergo degeneration: neurons of the oculomotor nucleus, which regulate eye movements, are less vulnerable compared to hypoglossal nucleus MNs. Several molecular studies have been performed to understand the different vulnerability of these MNs. By analyzing postmortem samples from ALS patients to other unrelated decedents, the differential genomic pattern between the two nuclei has been profiled. Among identified genes, adenylate cyclase activating polypeptide 1 (ADCYAP1) gene, encoding for pituitary adenylate cyclase-activating polypeptide (PACAP), was found significantly up-regulated in the oculomotor versus hypoglossal nucleus suggesting that it could play a trophic effect on MNs in ALS. In the present review, some aspects regarding the different vulnerability of oculomotor and hypoglossal nucleus to degeneration will be summarized. The distribution and potential role of PACAP on these MNs as studied largely in an animal model of ALS compared to controls, will be discussed.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Amyotrophic lateral sclerosis

          Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by progressive muscular paralysis reflecting degeneration of motor neurones in the primary motor cortex, corticospinal tracts, brainstem and spinal cord. Incidence (average 1.89 per 100,000/year) and prevalence (average 5.2 per100,000) are relatively uniform in Western countries, although foci of higher frequency occur in the Western Pacific. The mean age of onset for sporadic ALS is about 60 years. Overall, there is a slight male prevalence (M:F ratio~1.5:1). Approximately two thirds of patients with typical ALS have a spinal form of the disease (limb onset) and present with symptoms related to focal muscle weakness and wasting, where the symptoms may start either distally or proximally in the upper and lower limbs. Gradually, spasticity may develop in the weakened atrophic limbs, affecting manual dexterity and gait. Patients with bulbar onset ALS usually present with dysarthria and dysphagia for solid or liquids, and limbs symptoms can develop almost simultaneously with bulbar symptoms, and in the vast majority of cases will occur within 1–2 years. Paralysis is progressive and leads to death due to respiratory failure within 2–3 years for bulbar onset cases and 3–5 years for limb onset ALS cases. Most ALS cases are sporadic but 5–10% of cases are familial, and of these 20% have a mutation of the SOD1 gene and about 2–5% have mutations of the TARDBP (TDP-43) gene. Two percent of apparently sporadic patients have SOD1 mutations, and TARDBP mutations also occur in sporadic cases. The diagnosis is based on clinical history, examination, electromyography, and exclusion of 'ALS-mimics' (e.g. cervical spondylotic myelopathies, multifocal motor neuropathy, Kennedy's disease) by appropriate investigations. The pathological hallmarks comprise loss of motor neurones with intraneuronal ubiquitin-immunoreactive inclusions in upper motor neurones and TDP-43 immunoreactive inclusions in degenerating lower motor neurones. Signs of upper motor neurone and lower motor neurone damage not explained by any other disease process are suggestive of ALS. The management of ALS is supportive, palliative, and multidisciplinary. Non-invasive ventilation prolongs survival and improves quality of life. Riluzole is the only drug that has been shown to extend survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Global Epidemiology of Amyotrophic Lateral Sclerosis: A Systematic Review of the Published Literature

            Background: Amyotrophic lateral sclerosis (ALS) is relatively rare, yet the economic and social burden is substantial. Having accurate incidence and prevalence estimates would facilitate efficient allocation of healthcare resources. Objective: To provide a comprehensive and critical review of the epidemiological literature on ALS. Methods: MEDLINE and EMBASE (1995-2011) databases of population-based studies on ALS incidence and prevalence reporting quantitative data were analyzed. Data extracted included study location and time, design and data sources, case ascertainment methods and incidence and/or prevalence rates. Medians and interquartile ranges (IQRs) were calculated, and ALS case estimates were derived using 2010 population estimates. Results: In all, 37 articles met the inclusion criteria. In Europe, the median incidence rate (/100,000 population) was 2.08 (IQR 1.47-2.43), corresponding to an estimated 15,355 (10,852-17,938) cases. Median prevalence (/100,000 population) was 5.40 (IQR 4.06-7.89), or 39,863 (29,971-58,244) prevalent cases. Conclusions: Disparity in rates among ALS incidence and prevalence studies may be due to differences in study design or true variations in population demographics such as age and geography, including environmental factors and genetic predisposition. Additional large-scale studies that use standardized case ascertainment methods are needed to more accurately assess the true global burden of ALS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection.

              Molecular differences between dopamine (DA) neurons may explain why the mesostriatal DA neurons in the A9 region preferentially degenerate in Parkinson's disease (PD) and toxic models, whereas the adjacent A10 region mesolimbic and mesocortical DA neurons are relatively spared. To characterize innate physiological differences between A9 and A10 DA neurons, we determined gene expression profiles in these neurons in the adult mouse by laser capture microdissection, microarray analysis and real-time PCR. We found 42 genes relatively elevated in A9 DA neurons, whereas 61 genes were elevated in A10 DA neurons [> 2-fold; false discovery rate (FDR) < 1%]. Genes of interest for further functional analysis were selected by criteria of (i) fold differences in gene expression, (ii) real-time PCR validation and (iii) potential roles in neurotoxic or protective biochemical pathways. Three A9-elevated molecules [G-protein coupled inwardly rectifying K channel 2 (GIRK2), adenine nucleotide translocator 2 (ANT-2) and the growth factor IGF-1] and three A10-elevated peptides (GRP, CGRP and PACAP) were further examined in both alpha-synuclein overexpressing PC12 (PC12-alphaSyn) cells and rat primary ventral mesencephalic (VM) cultures exposed to MPP+ neurotoxicity. GIRK2-positive DA neurons were more vulnerable to MPP+ toxicity and overexpression of GIRK2 increased the vulnerability of PC12-alphaSyn cells to the toxin. Blocking of ANT decreased vulnerability to MPP+ in both cell culture systems. Exposing cells to IGF-1, GRP and PACAP decreased vulnerability of both cell types to MPP+, whereas CGRP protected PC12-alphaSyn cells but not primary VM DA neurons. These results indicate that certain differentially expressed molecules in A9 and A10 DA neurons may play key roles in their relative vulnerability to toxins and PD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                11 August 2020
                2020
                : 14
                : 805
                Affiliations
                [1] 1Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania , Catania, Italy
                [2] 2Department of Drug Science, University of Catania , Catania, Italy
                [3] 3Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR) , Catania, Italy
                [4] 4Department of Anatomy, MTA-PTE PACAP Research Team, University of Pécs Medical School , Pécs, Hungary
                Author notes

                Edited by: Hubert Vaudry, Université de Rouen, France

                Reviewed by: Jolanta B. Zawilska, Medical University of Lodz, Poland; Nils Lambrecht, VA Long Beach Healthcare System, United States

                *Correspondence: Velia D’Agata, vdagata@ 123456unict.it

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.00805
                7432287
                32848572
                77f481c2-2ded-49a0-8c87-84be79d078a5
                Copyright © 2020 Maugeri, D’Amico, Morello, Reglodi, Cavallaro and D’Agata.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 February 2020
                : 09 July 2020
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 81, Pages: 11, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                amyotrophic lateral sclerosis,lower motor neurons,oculomotor nucleus,hypoglossal nucleus,pituitary adenylate cyclase-activating polypeptide

                Comments

                Comment on this article