107
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Resveratrol suppresses human colon cancer cell proliferation and induces apoptosis via targeting the pentose phosphate and the talin-FAK signaling pathways-A proteomic approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We and others have previously reported that resveratrol (RSV) suppresses colon cancer cell proliferation and elevates apoptosis in vitro and/or in vivo, however molecular mechanisms are not fully elucidated. Particularly, little information is available on RSV's effects on metabolic pathways and the cell-extra cellular matrix (ECM) communication that are critical for cancer cell growth. To identify important targets of RSV, we analyzed whole protein fractions from HT-29 advanced human colon cancer cell line treated with solvent control, IGF-1 (10 nM) and RSV (150 μM) using LC/MS/MS-Mud PIT (Multidimensional Protein Identification Technology).

          Results

          Pentose phosphate pathway (PPP), a vital metabolic pathway for cell cycle progression, was elevated and suppressed by IGF-1 and RSV, respectively in the HT-29 cell line. Enzymatic assays confirmed RSV suppression of glucose-6 phosphate dehydrogenase (rate limiting) and transketolase, key enzymes of the PPP. RSV (150 μM) suppressed, whereas IGF-1 (10 nM) elevated focal adhesion complex (FAC) proteins, talin and pFAK, critical for the cell-ECM communication. Western blotting analyses confirmed the suppression or elevation of these proteins in HT-29 cancer cells treated with RSV or IGF-1, respectively.

          Conclusions

          Proteomic analysis enabled us to establish PPP and the talin-pFAK as targets of RSV which suppress cancer cell proliferation and induce apoptosis in the colon cancer cell line HT-29. RSV (150 μM) suppressed these pathways in the presence and absence of IGF-1, suggesting its role as a chemo-preventive agent even in obese condition.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Integrin-regulated FAK-Src signaling in normal and cancer cells.

          Integrins can alter cellular behavior through the recruitment and activation of signaling proteins such as non-receptor tyrosine kinases including focal adhesion kinase (FAK) and c-Src that form a dual kinase complex. The FAK-Src complex binds to and can phosphorylate various adaptor proteins such as p130Cas and paxillin. In normal cells, multiple integrin-regulated linkages exist to activate FAK or Src. Activated FAK-Src functions to promote cell motility, cell cycle progression and cell survival. Recent studies have found that the FAK-Src complex is activated in many tumor cells and generates signals leading to tumor growth and metastasis. As both FAK and Src catalytic activities are important in promoting VEGF-associated tumor angiogenesis and protease-associated tumor metastasis, support is growing that FAK and Src may be therapeutically relevant targets in the inhibition of tumor progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FAK integrates growth-factor and integrin signals to promote cell migration.

            Here we show that cells lacking focal adhesion kinase (FAK) are refractory to motility signals from platelet-derived and epidermal growth factors (PDGF and EGF respectively), and that stable re-expression of FAK rescues these defects. FAK associates with activated PDGF- and EGF-receptor (PDGFR and EGFR) signalling complexes, and expression of the band-4.1-like domain at the FAK amino terminus is sufficient to mediate an interaction with activated EGFR. However, efficient EGF-stimulated cell migration also requires FAK to be targeted, by its carboxy-terminal domain, to sites of integrin-receptor clustering. Although the kinase activity of FAK is not needed to promote PDGF- or EGF-stimulated cell motility, kinase-inactive FAK is transphosphorylated at the indispensable Src-kinase-binding site, FAK Y397, after EGF stimulation of cells. Our results establish that FAK is an important receptor-proximal link between growth-factor-receptor and integrin signalling pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent.

              The red grape constituent resveratrol possesses cancer chemopreventive properties in rodents. The hypothesis was tested that, in healthy humans, p.o. administration of resveratrol is safe and results in measurable plasma levels of resveratrol. A phase I study of oral resveratrol (single doses of 0.5, 1, 2.5, or 5 g) was conducted in 10 healthy volunteers per dose level. Resveratrol and its metabolites were identified in plasma and urine by high-performance liquid chromatography-tandem mass spectrometry and quantitated by high-performance liquid chromatography-UV. Consumption of resveratrol did not cause serious adverse events. Resveratrol and six metabolites were recovered from plasma and urine. Peak plasma levels of resveratrol at the highest dose were 539 +/- 384 ng/mL (2.4 micromol/L, mean +/- SD; n = 10), which occurred 1.5 h post-dose. Peak levels of two monoglucuronides and resveratrol-3-sulfate were 3- to 8-fold higher. The area under the plasma concentration curve (AUC) values for resveratrol-3-sulfate and resveratrol monoglucuronides were up to 23 times greater than those of resveratrol. Urinary excretion of resveratrol and its metabolites was rapid, with 77% of all urinary agent-derived species excreted within 4 h after the lowest dose. Cancer chemopreventive effects of resveratrol in cells in vitro require levels of at least 5 micromol/L. The results presented here intimate that consumption of high-dose resveratrol might be insufficient to elicit systemic levels commensurate with cancer chemopreventive efficacy. However, the high systemic levels of resveratrol conjugate metabolites suggest that their cancer chemopreventive properties warrant investigation.
                Bookmark

                Author and article information

                Journal
                Proteome Sci
                Proteome Science
                BioMed Central
                1477-5956
                2011
                17 August 2011
                : 9
                : 49
                Affiliations
                [1 ]Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
                [2 ]Cancer Prevention and Control Program, University of Colorado Cancer Center, Aurora, Colorado, USA
                [3 ]Department of Pathology, Scott & White Hospital, Temple, Texas, USA
                [4 ]Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
                [5 ]Agilent Technologies, Wilmington, Delaware, USA
                Article
                1477-5956-9-49
                10.1186/1477-5956-9-49
                3175442
                21849056
                743e2469-1ef3-4d6c-97e8-33d350e02e70
                Copyright ©2011 Vanamala et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 January 2011
                : 17 August 2011
                Categories
                Research

                Molecular biology
                focal adhesion kinase (fak),resveratrol,talin,proteomics,insulin-like growth factor-1 (igf-1),pentose phosphate pathway

                Comments

                Comment on this article