564
views
0
recommends
+1 Recommend
0 collections
    6
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Microfluidics-Assisted Fabrication of Gelatin-Silica Core–Shell Microgels for Injectable Tissue Constructs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microfabrication technology provides a highly versatile platform for engineering hydrogels used in biomedical applications with high-resolution control and injectability. Herein, we present a strategy of microfluidics-assisted fabrication photo-cross-linkable gelatin microgels, coupled with providing protective silica hydrogel layer on the microgel surface to ultimately generate gelatin-silica core–shell microgels for applications as in vitro cell culture platform and injectable tissue constructs. A microfluidic device having flow-focusing channel geometry was utilized to generate droplets containing methacrylated gelatin (GelMA), followed by a photo-cross-linking step to synthesize GelMA microgels. The size of the microgels could easily be controlled by varying the ratio of flow rates of aqueous and oil phases. Then, the GelMA microgels were used as in vitro cell culture platform to grow cardiac side population cells on the microgel surface. The cells readily adhered on the microgel surface and proliferated over time while maintaining high viability (∼90%). The cells on the microgels were also able to migrate to their surrounding area. In addition, the microgels eventually degraded over time. These results demonstrate that cell-seeded GelMA microgels have a great potential as injectable tissue constructs. Furthermore, we demonstrated that coating the cells on GelMA microgels with biocompatible and biodegradable silica hydrogels via sol–gel method provided significant protection against oxidative stress which is often encountered during and after injection into host tissues, and detrimental to the cells. Overall, the microfluidic approach to generate cell-adhesive microgel core, coupled with silica hydrogels as a protective shell, will be highly useful as a cell culture platform to generate a wide range of injectable tissue constructs.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Cell-laden microengineered gelatin methacrylate hydrogels.

          The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regenerating the heart.

            Cell-based cardiac repair offers the promise of rebuilding the injured heart from its component parts. Work began with committed cells such as skeletal myoblasts, but recently the field has expanded to explore an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and both mouse and human embryonic stem cells. A related strategy for cardiac repair involves cell mobilization with factors such as cytokines. Translation of cell-based approaches to the clinic has progressed rapidly, and clinical trials using autologous skeletal myoblasts and bone marrow cells are under way. Many challenges remain before the vision of healing an infarct by muscle regeneration can be realized. Future research is likely to focus on improving our ability to guide the differentiation of stem cells, control their survival and proliferation, identify factors that mediate their homing and modulate the heart's innate inflammatory and fibrotic responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies.

              M. Zhang, D. Methot, V. Poppa, Y. Fujio, K. Walsh and C. E. Murry. Cardiomyocyte Grafting for Cardiac Repair: Graft Cell Death and Anti-Death Strategies. Journal of Molecular and Cellular Cardiology (2001) 33, 907-921. Recent studies indicate that cardiomyocyte grafting forms new myocardium in injured hearts. It is unknown, however, whether physiologically significant amounts of new myocardium can be generated. Pilot experiments showed that death of grafted rat neonatal cardiomyocytes limited formation of new myocardium after acute cryoinjury. Time-course studies showed that, at 30 min after grafting, only 1.8(+/-0.4)% of graft cells were TUNEL-positive. At 1 day, however, TUNEL indices increased to 32.1(+/-3.5)% and remained high at 4 days, averaging 9.8(+/-3.8)%. By 7 days, TUNEL decreased to 1.0(+/-0.2)%. Electron microscopy revealed that dead cells had features of both irreversible ischemic injury and apoptosis. To test whether ischemia contributed to poor graft survival, grafts were placed into vascularized 2-week-old cardiac granulation tissue or normal myocardium. TUNEL indices were reduced by 53% and 86%, respectively. Adenoviral infection of graft cells with the cytoprotective kinase Akt, or constitutively active Akt, reduced TUNEL indices by 31% and 40%, respectively, compared to beta -gal-transfected controls. Neither treatment reached statistical significance compared to untreated controls, however. Heat shock reduced cardiomyocyte death in vitro in response to serum deprivation, glucose depletion, and viral activation of the Fas death pathway. When cardiomyocytes were heat shocked prior to grafting, graft cell death in vivo was reduced by 54% at day 1. Therefore, high levels of cardiomyocyte death occur for at least 4 days after grafting into injured hearts, in large part due to ischemia. Death can be limited by activating the Akt pathway and even more effectively by heat shock prior to transplantation. Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Journal
                Biomacromolecules
                Biomacromolecules
                bm
                bomaf6
                Biomacromolecules
                American Chemical Society
                1525-7797
                1526-4602
                17 December 2013
                13 January 2014
                : 15
                : 1
                : 283-290
                Affiliations
                []Harvard-MIT Division of Health Sciences and Technology, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
                [§ ]Division of Mechanical Design Engineering, Chonbuk National University , Jeonju 561-756, South Korea
                []School of Engineering, University of British Columbia , Kelowna, British Columbia V1V 1V7, Canada
                []Division of Cardiology and Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
                [# ]Department of Mechanical and Industrial Engineering, Northeastern University , Boston, Massachusetts 02115, United States
                []Wyss Institute for Biologically Inspired Engineering, Harvard University , Boston, Massachusetts 02115, United States
                Author notes
                Article
                10.1021/bm401533y
                3922064
                24344625
                73ed29d6-2465-444a-8cc6-903faf37addc
                Copyright © 2013 American Chemical Society
                History
                : 16 October 2013
                : 10 December 2013
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                bm401533y
                bm-2013-01533y

                Biochemistry
                Biochemistry

                Comments

                Comment on this article