24
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nano rough micron patterned titanium for directing osteoblast morphology and adhesion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies have demonstrated greater functions of osteoblasts (bone-forming cells) on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 μm to 22 μm) on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion) promising for their long term functions, criteria necessary to improve orthopedic implant efficacy.

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Titanium alloys in total joint replacement--a materials science perspective.

          Increased use of titanium alloys as biomaterials is occurring due to their lower modulus, superior biocompatibility and enhanced corrosion resistance when compared to more conventional stainless steels and cobalt-based alloys. These attractive properties were a driving force for the early introduction of alpha (cpTi) and alpha + beta (Ti-6A1-4V) alloys as well as for the more recent development of new Ti-alloy compositions and orthopaedic metastable beta titanium alloys. The later possess enhanced biocompatibility, reduced elastic modulus, and superior strain-controlled and notch fatigue resistance. However, the poor shear strength and wear resistance of titanium alloys have nevertheless limited their biomedical use. Although the wear resistance of beta-Ti alloys has shown some improvement when compared to alpha + beta alloys, the ultimate utility of orthopaedic titanium alloys as wear components will require a more complete fundamental understanding of the wear mechanisms involved. This review examines current information on the physical and mechanical characteristics of titanium alloys used in artifical joint replacement prostheses, with a special focus on those issues associated with the long-term prosthetic requirements, e.g., fatigue and wear.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical properties and the hierarchical structure of bone.

            Detailed descriptions of the structural features of bone abound in the literature; however, the mechanical properties of bone, in particular those at the micro- and nano-structural level, remain poorly understood. This paper surveys the mechanical data that are available, with an emphasis on the relationship between the complex hierarchical structure of bone and its mechanical properties. Attempts to predict the mechanical properties of bone by applying composite rule of mixtures formulae have been only moderately successful, making it clear that an accurate model should include the molecular interactions or physical mechanisms involved in transfer of load across the bone material subunits. Models of this sort cannot be constructed before more information is available about the interactions between the various organic and inorganic components. Therefore, further investigations of mechanical properties at the 'materials level', in addition to the studies at the 'structural level' are needed to fill the gap in our present knowledge and to achieve a complete understanding of the mechanical properties of bone.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced functions of osteoblasts on nanophase ceramics.

              T. Webster (2000)
              Select functions of osteoblasts (bone-forming cells) on nanophase (materials with grain sizes less than 100 nm) alumina, titania, and hydroxyapatite (HA) were investigated using in vitro cellular models. Compared to conventional ceramics, surface occupancy of osteoblast colonies was significantly less on all nanophase ceramics tested in the present study after 4 and 6 days of culture. Osteoblast proliferation was significantly greater on nanophase alumina, titania, and HA than on conventional formulations of the same ceramic after 3 and 5 days. More importantly, compared to conventional ceramics, synthesis of alkaline phosphatase and deposition of calcium-containing mineral was significantly greater by osteoblasts cultured on nanophase than on conventional ceramics after 21 and 28 days. The results of the present study provided the first evidence of enhanced long-term (on the order of days to weeks) functions of osteoblasts cultured on nanophase ceramics; in this manner, nanophase ceramics clearly represent a unique and promising class of orthopaedic/dental implant formulations with improved osseointegrative properties.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                June 2008
                June 2008
                : 3
                : 2
                : 229-241
                Affiliations
                Division of Engineering, Brown University, Providence RI, USA
                Author notes
                Correspondence: Thomas J Webster Divisions of Engineering and Orthopedics, Brown University, Providence, RI 02917, USA Tel +1 401 523 3802 Fax +1 401 523 9107 Email thomas_webster@ 123456brown.edu
                Article
                2527665
                18686782
                73bf6e5f-9e9d-48ad-8f47-ebdcb1de75fd
                © 2008 Puckett and Webster, publisher and licensee Dove Medical Press Ltd.
                History
                Categories
                Original Research

                Molecular medicine
                osteoblasts,orthopedic,alignment,surface topography,nanophase,titanium
                Molecular medicine
                osteoblasts, orthopedic, alignment, surface topography, nanophase, titanium

                Comments

                Comment on this article