2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      (Dis)similarities between the Decidual and Tumor Microenvironment

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Placenta-specific trophoblast and tumor cells exhibit many common characteristics. Trophoblast cells invade maternal tissues while being tolerated by the maternal immune system. Similarly, tumor cells can invade surrounding tissues and escape the immune system. Importantly, both trophoblast and tumor cells are supported by an abetting microenvironment, which influences invasion, angiogenesis, and immune tolerance/evasion, among others. However, in contrast to tumor cells, the metabolic, proliferative, migrative, and invasive states of trophoblast cells are under tight regulatory control. In this review, we provide an overview of similarities and dissimilarities in regulatory processes that drive trophoblast and tumor cell fate, particularly focusing on the role of the abetting microenvironments.

          Related collections

          Most cited references367

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The basics of epithelial-mesenchymal transition.

            The origins of the mesenchymal cells participating in tissue repair and pathological processes, notably tissue fibrosis, tumor invasiveness, and metastasis, are poorly understood. However, emerging evidence suggests that epithelial-mesenchymal transitions (EMTs) represent one important source of these cells. As we discuss here, processes similar to the EMTs associated with embryo implantation, embryogenesis, and organ development are appropriated and subverted by chronically inflamed tissues and neoplasias. The identification of the signaling pathways that lead to activation of EMT programs during these disease processes is providing new insights into the plasticity of cellular phenotypes and possible therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Tumor Microenvironment Innately Modulates Cancer Progression

              Cancer development and progression occurs in concert with alterations in the surrounding stroma. Cancer cells can functionally sculpt their microenvironment through the secretion of various cytokines, chemokines, and other factors. This results in a reprogramming of the surrounding cells, enabling them to play a determinative role in tumor survival and progression. Immune cells are important constituents of the tumor stroma and critically take part in this process. Growing evidence suggests that the innate immune cells (macrophages, neutrophils, dendritic cells, innate lymphoid cells, myeloid-derived suppressor cells, and NK cells) as well as adaptive immune cells (T cells and B cells) contribute to tumor progression when present in the tumor microenvironment (TME). Crosstalk between cancer cells and the proximal immune cells ultimately results in an environment that fosters tumor growth and metastasis. Understanding the nature of this dialog will allow for improved therapeutics that simultaneously target multiple components of the TME, increasing the likelihood of favorable patient outcomes.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                May 2022
                May 04 2022
                : 10
                : 5
                : 1065
                Article
                10.3390/biomedicines10051065
                35625802
                73953d58-999d-4e70-a736-5ea9a5bddabf
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article