13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functions of p38 MAP Kinases in the Central Nervous System

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.

          Related collections

          Most cited references271

          • Record: found
          • Abstract: found
          • Article: not found

          p38 MAP-kinases pathway regulation, function and role in human diseases.

          Mammalian p38 mitogen-activated protein kinases (MAPKs) are activated by a wide range of cellular stresses as well as in response to inflammatory cytokines. There are four members of the p38MAPK family (p38alpha, p38beta, p38gamma and p38delta) which are about 60% identical in their amino acid sequence but differ in their expression patterns, substrate specificities and sensitivities to chemical inhibitors such as SB203580. A large body of evidences indicates that p38MAPK activity is critical for normal immune and inflammatory response. The p38MAPK pathway is a key regulator of pro-inflammatory cytokines biosynthesis at the transcriptional and translational levels, which makes different components of this pathway potential targets for the treatment of autoimmune and inflammatory diseases. However, recent studies have shed light on the broad effect of p38MAPK activation in the control of many other aspects of the physiology of the cell, such as control of cell cycle or cytoskeleton remodelling. Here we focus on these emergent roles of p38MAPKs and their implication in different pathologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human.

            Mitogen-activated protein kinases (MAPK) are serine-threonine protein kinases that are activated by diverse stimuli ranging from cytokines, growth factors, neurotransmitters, hormones, cellular stress, and cell adherence. Mitogen-activated protein kinases are expressed in all eukaryotic cells. The basic assembly of MAPK pathways is a three-component module conserved from yeast to humans. The MAPK module includes three kinases that establish a sequential activation pathway comprising a MAPK kinase kinase (MKKK), MAPK kinase (MKK), and MAPK. Currently, there have been 14 MKKK, 7 MKK, and 12 MAPK identified in mammalian cells. The mammalian MAPK can be subdivided into five families: MAPKerk1/2, MAPKp38, MAPKjnk, MAPKerk3/4, and MAPKerk5. Each MAPK family has distinct biological functions. In Saccharomyces cerevisiae, there are five MAPK pathways involved in mating, cell wall remodelling, nutrient deprivation, and responses to stress stimuli such as osmolarity changes. Component members of the yeast pathways have conserved counterparts in mammalian cells. The number of different MKKK in MAPK modules allows for the diversity of inputs capable of activating MAPK pathways. In this review, we define all known MAPK module kinases from yeast to humans, what is known about their regulation, defined MAPK substrates, and the function of MAPK in cell physiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitogen-activated protein kinases in apoptosis regulation.

              Cells are continuously exposed to a variety of environmental stresses and have to decide 'to be or not to be' depending on the types and strength of stress. Among the many signaling pathways that respond to stress, mitogen-activated protein kinase (MAPK) family members are crucial for the maintenance of cells. Three subfamilies of MAPKs have been identified: extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs), and p38-MAPKs. It has been originally shown that ERKs are important for cell survival, whereas JNKs and p38-MAPKs were deemed stress responsive and thus involved in apoptosis. However, the regulation of apoptosis by MAPKs is more complex than initially thought and often controversial. In this review, we discuss MAPKs in apoptosis regulation with attention to mouse genetic models and critically point out the multiple roles of MAPKs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                08 September 2020
                2020
                : 13
                : 570586
                Affiliations
                Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University , Sydney, NSW, Australia
                Author notes

                Edited by: Jianmin Cui, Washington University in St. Louis, United States

                Reviewed by: Yoko Hirata, Gifu University, Japan; Satoru Yamagishi, Hamamatsu University School of Medicine, Japan

                *Correspondence: Arne Ittner, arne.ittner@ 123456mq.edu.au
                Article
                10.3389/fnmol.2020.570586
                7509416
                33013322
                71f3d56a-92cb-4382-b4e2-7fe02b0729f7
                Copyright © 2020 Asih, Prikas, Stefanoska, Tan, Ahel and Ittner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 June 2020
                : 18 August 2020
                Page count
                Figures: 5, Tables: 3, Equations: 0, References: 332, Pages: 27, Words: 0
                Funding
                Funded by: National Health and Medical Research Council 10.13039/501100000925
                Award ID: 1143978
                Funded by: Centre of Excellence in Cognition and its Disorders, Australian Research Council 10.13039/501100003752
                Categories
                Neuroscience
                Review

                Neurosciences
                signal transduction,central nervous system,neuron,astrocyte,microglia,oligodendrocyte,mitogen activated protein (map) kinase p38

                Comments

                Comment on this article