28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Different Plyometric Training Frequencies on Components of Physical Fitness in Amateur Female Soccer Players

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plyometric jump training (PJT) is a frequently used and effective means to improve amateur and elite soccer players' physical fitness. However, it is unresolved how different PJT frequencies per week with equal overall training volume may affect training-induced adaptations. Therefore, the aim of this study was to compare the effects of an in-season 8 week PJT with one session vs. two sessions per week and equal training volume on components of physical fitness in amateur female soccer players. A single-blind randomized controlled trial was conducted. Participants ( N = 23; age, 21.4 ± 3.2 years) were randomly assigned to a one session PJT per-week (PJT-1, n = 8), two sessions PJT per-week (PJT-2, n = 8) or an active control group (CON, n = 7). Before and after training, participants performed countermovement jumps (CMJ), drop-jumps from a 20-cm drop-height (DJ20), a maximal kicking velocity test (MKV), the 15-m linear sprint-time test, the Meylan test for the assessment of change of direction ability (CoDA), and the Yo-Yo intermittent recovery endurance test (Yo-YoIR1). Results revealed significant main effects of time for the CMJ, DJ20, MKV, 15-m sprint, CoDA, and the Yo-YoIR1 (all p < 0.001; d = 0.57–0.83). Significant group × time interactions were observed for the CMJ, DJ20, MKV, 15-m sprint, CoDA, and the Yo-YoIR1 (all p < 0.05; d = 0.36–0.51). Post-hoc analyses showed similar improvements for PJT-1 and PJT-2 groups in CMJ (Δ10.6%, d = 0.37; and Δ10.1%, d = 0.51, respectively), DJ20 (Δ12.9%, d = 0.47; and Δ13.1%, d = 0.54, respectively), MKV (Δ8.6%, d = 0.52; and Δ9.1%, d = 0.47, respectively), 15-m sprint (Δ8.3%, d = 2.25; and Δ9.5%, d = 2.67, respectively), CoDA (Δ7.5%, d = 1.68; and Δ7.4%, d = 1.16, respectively), and YoYoIR1 (Δ10.3%, d = 0.22; and Δ9.9%, d = 0.26, respectively). No significant pre-post changes were found for CON (all p > 0.05; Δ0.5–4.2%, d = 0.03–0.2). In conclusion, higher PJT exposure in terms of session frequency has no extra effects on female soccer players' physical fitness development when jump volume is equated during a short-term (i.e., 8 weeks) training program. From this, it follows that one PJT session per week combined with regular soccer-specific training appears to be sufficient to induce physical fitness improvements in amateur female soccer players.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          The yo-yo intermittent recovery test: physiological response, reliability, and validity.

          To examine the physiological response and reproducibility of the Yo-Yo intermittent recovery test and its application to elite soccer. Heart rate was measured, and metabolites were determined in blood and muscle biopsies obtained before, during, and after the Yo-Yo test in 17 males. Physiological measurements were also performed during a Yo-Yo retest and an exhaustive incremental treadmill test (ITT). Additionally, 37 male elite soccer players performed two to four seasonal tests, and the results were related to physical performance in matches. The test-retest CV for the Yo-Yo test was 4.9%. Peak heart rate was similar in ITT and Yo-Yo test (189 +/- 2 vs 187 +/- 2 bpm), whereas peak blood lactate was higher (P < 0.05) in the Yo-Yo test. During the Yo-Yo test, muscle lactate increased eightfold (P < 0.05) and muscle creatine phosphate (CP) and glycogen decreased (P < 0.05) by 51% and 23%, respectively. No significant differences were observed in muscle CP, lactate, pH, or glycogen between 90 and 100% of exhaustion time. During the precompetition period, elite soccer players improved (P < 0.05) Yo-Yo test performance and maximum oxygen uptake ([OV0312]O(2max)) by 25 +/- 6 and 7 +/- 1%, respectively. High-intensity running covered by the players during games was correlated to Yo-Yo test performance (r = 0.71, P < 0.05) but not to [OV0312]O(2max) and ITT performance. The test had a high reproducibility and sensitivity, allowing for detailed analysis of the physical capacity of athletes in intermittent sports. Specifically, the Yo-Yo intermittent recovery test was a valid measure of fitness performance in soccer. During the test, the aerobic loading approached maximal values, and the anaerobic energy system was highly taxed. Additionally, the study suggests that fatigue during intense intermittent short-term exercise was unrelated to muscle CP, lactate, pH, and glycogen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anthropometric and physiological predispositions for elite soccer.

            This review is focused on anthropometric and physiological characteristics of soccer players with a view to establishing their roles within talent detection, identification and development programmes. Top-class soccer players have to adapt to the physical demands of the game, which are multifactorial. Players may not need to have an extraordinary capacity within any of the areas of physical performance but must possess a reasonably high level within all areas. This explains why there are marked individual differences in anthropometric and physiological characteristics among top players. Various measurements have been used to evaluate specific aspects of the physical performance of both youth and adult soccer players. The positional role of a player is related to his or her physiological capacity. Thus, midfield players and full-backs have the highest maximal oxygen intakes ( > 60 ml x kg(-1) x min(-1)) and perform best in intermittent exercise tests. On the other hand, midfield players tend to have the lowest muscle strength. Although these distinctions are evident in adult and elite youth players, their existence must be interpreted circumspectly in talent identification and development programmes. A range of relevant anthropometric and physiological factors can be considered which are subject to strong genetic influences (e.g. stature and maximal oxygen intake) or are largely environmentally determined and susceptible to training effects. Consequently, fitness profiling can generate a useful database against which talented groups may be compared. No single method allows for a representative assessment of a player's physical capabilities for soccer. We conclude that anthropometric and physiological criteria do have a role as part of a holistic monitoring of talented young players.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stretch-shortening cycle: a powerful model to study normal and fatigued muscle.

              Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given shortening velocity. Characteristic to this phenomenon is very low EMG-activity in the concentric phase of the cycle, but a very pronounced contribution of the short-latency stretch-reflex component. This reflex contributes significantly to force generation during the transition (stretch-shortening) phase in SSC action such as hopping and running. The amplitude of the stretch reflex component - and the subsequent force enhancement - may vary according to the increased stretch-load but also to the level of fatigue. While moderate SSC fatigue may result in slight potentiation, the exhaustive SSC fatigue can dramatically reduce the same reflex contribution. SSC fatigue is a useful model to study the processes of reversible muscle damage and how they interact with muscle mechanics, joint and muscle stiffness. All these parameters and their reduction during SSC fatigue changes stiffness regulation through direct influences on muscle spindle (disfacilitation), and by activating III and IV afferent nerve endings (proprioseptic inhibition). The resulting reduced stretch reflex sensitivity and muscle stiffness deteriorate the force potentiation mechanisms. Recovery of these processes is long lasting and follows the bimodal trend of recovery. Direct mechanical disturbances in the sarcomere structural proteins, such as titin, may also occur as a result of an exhaustive SSC exercise bout.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                17 July 2018
                2018
                : 9
                : 934
                Affiliations
                [1] 1Laboratory of Measurement and Assessment in Sport, Department of Physical Activity Sciences, Research Nucleus in Health, Physical Activity and Sport, Universidad de Los Lagos , Osorno, Chile
                [2] 2Department of Physical Education, Sports and Recreation, Universidad de La Frontera , Temuco, Chile
                [3] 3Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada , Granada, Spain
                [4] 4Department of Sports Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of Most Holy Concepción , Concepción, Chile
                [5] 5Physical Education and Sport Department, Faculty of Education and Sport, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz, Spain
                [6] 6Faculdade de Educacao Fisica e Danca, Universidade Federal de Goias , Goiania, Brazil
                [7] 7Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam , Potsdam, Germany
                [8] 8High Institute of Sports and Physical Education, Kef, University of Jendouba , Jendouba, Tunisia
                Author notes

                Edited by: Hassane Zouhal, University of Rennes 2–Upper Brittany, France

                Reviewed by: Emiliano Cè, Università degli Studi di Milano, Italy; Guillaume Ravé, Université d'Angers, France

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.00934
                6056896
                30065665
                71ed4b37-fdf3-4cc1-b97f-9f547c8b7240
                Copyright © 2018 Ramirez-Campillo, García-Pinillos, García-Ramos, Yanci, Gentil, Chaabene and Granacher.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 April 2018
                : 25 June 2018
                Page count
                Figures: 0, Tables: 3, Equations: 0, References: 81, Pages: 11, Words: 10321
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                women,stretch-shortening cycle,muscle power,football,training load,agility
                Anatomy & Physiology
                women, stretch-shortening cycle, muscle power, football, training load, agility

                Comments

                Comment on this article