68
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Halogenated Compounds from Marine Algae

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Detection Technologies. Ambient mass spectrometry.

          A recent innovation in mass spectrometry is the ability to record mass spectra on ordinary samples, in their native environment, without sample preparation or preseparation by creating ions outside the instrument. In desorption electrospray ionization (DESI), the principal method described here, electrically charged droplets are directed at the ambient object of interest; they release ions from the surface, which are then vacuumed through the air into a conventional mass spectrometer. Extremely rapid analysis is coupled with high sensitivity and high chemical specificity. These characteristics are advantageously applied to high-throughput metabolomics, explosives detection, natural products discovery, and biological tissue imaging, among other applications. Future possible uses of DESI for in vivo clinical analysis and its adaptation to portable mass spectrometers are described.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marine natural products.

            This review covers the literature published in 2007 for marine natural products, with 948 citations(627 for the period January to December 2007) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidarians,bryozoans, molluscs, tunicates, echinoderms and true mangrove plants. The emphasis is on new compounds (961 for 2007), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.1 Introduction, 2 Reviews, 3 Marine microorganisms and phytoplankton, 4 Green algae, 5 Brown algae, 6 Red algae, 7 Sponges, 8 Cnidarians, 9 Bryozoans, 10 Molluscs, 11 Tunicates (ascidians),12 Echinoderms, 13 Miscellaneous, 14 Conclusion, 15 References.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolites from algae with economical impact.

              In order to survive in a highly competitive environment, freshwater or marine algae have to develop defense strategies that result in a tremendous diversity of compounds from different metabolic pathways. Recent trends in drug research from natural sources have shown that algae are promising organisms to furnish novel biochemically active compounds. The current review describes the main substances biosynthesized by algae with potential economic impact in food science, pharmaceutical industry and public health. Emphasis is given to fatty acids, steroids, carotenoids, polysaccharides, lectins, mycosporine-like amino acids, halogenated compounds, polyketides and toxins.
                Bookmark

                Author and article information

                Journal
                Mar Drugs
                MD
                Marine Drugs
                Molecular Diversity Preservation International
                1660-3397
                2010
                9 August 2010
                : 8
                : 8
                : 2301-2317
                Affiliations
                [1 ] IPIMAR, Av. de Brasília, 1449-006 Lisboa, Portugal; E-Mail: cvale@ 123456ipimar.pt (C.V.)
                [2 ] Centro de Química e Bioquímica/Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal; E-Mail: aprauter@ 123456fc.ul.pt (A.P.R.)
                Author notes
                *Author to whom correspondence should be addressed; E-Mail: tcabrita@ 123456ipimar.pt ; Tel.: +351-213-027-000; Fax: +351-213-015-948.
                Article
                marinedrugs-08-02301
                10.3390/md8082301
                2953405
                20948909
                6d6491a2-36c4-4287-81fc-c6e4465e8ec0
                © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 30 June 2010
                : 23 July 2010
                : 2 August 2010
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                marine algae,halogenated compounds,biotechnological applications,ecological role

                Comments

                Comment on this article