16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      COX-2 Inhibitors Decrease Expression of PD-L1 in Colon Tumors and Increase the Influx of Type I Tumor-infiltrating Lymphocytes

      , , , , ,
      Cancer Prevention Research
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colon cancer is initiated under inflammatory conditions associated with upregulation of immune checkpoint proteins. We evaluated immune modulation induced by nonsteroidal anti-inflammatory agents used for colon cancer prevention. Both celecoxib and naproxen inhibited polyp growth in APC Min mice. Treatment of mice with either drug significantly decreased PD-L1 expression on polyps in a dose-dependent manner (P < 0.0001 for both). The decrease in PD-L1 was associated with an influx of CD8+ T cells into polyps (P < 0.0001, celecoxib; P = 0.048, naproxen) compared with lesions from untreated animals and correlated with disease control. Naproxen is a nonselective inhibitor of both COX-1 and COX-2, and we questioned the role of the different cyclooxygenases in PD-L1 regulation. Silencing either COX-2 or COX-1 RNA in the murine colon cancer cell line MC38, reduced PD-L1 expression by 86% in COX-2–silenced cells (P < 0.0001) while there was little effect with COX-1 siRNA compared with control. Naproxen could inhibit the growth of MC38 in vivo. Naproxen-treated mice demonstrated a significant reduction in MC38 growth as compared with control (P < 0001). Both Tbet+ CD4 and CD8 tumor-infiltrating lymphocytes (TIL) were significantly increased (P = 0.04 and P = 0.038, respectively) without a concurrent increase in GATA3+ TIL (P > 0.05). CD8+ TIL highly expressed the activation marker, CD69. Not only was PD-L1 expression decreased on tumors, but LAG3+CD8+ T cells and PD-1 and LAG3 expression on regulatory T cells was also reduced (P = 0.008 and P = 0.002, respectively). These data demonstrate COX-2 inhibitors significantly decrease PD-L1 in colonic lesions and favorably impact the phenotype of tumor-infiltrating lymphocytes to control tumor growth.

          Prevention Relevance:

          Nonsteroidal anti-inflammatories (NSAID) are an essential component of any combination chemoprevention of colon cancer. We show NSAID treatment reduces PD-L1 expression on intestinal tumor cells. NSAID regulation of PD-L1 is dependent on COX-2 expression. These data underscore an important immunologic mechanism of action for NSAID in colon cancer prevention.

          See related Spotlight, p. 209

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells.

          In recent years, it has been established that programmed cell death protein ligand 1 (PD-L1)-mediated inhibition of activated PD-1(+) T lymphocytes plays a major role in tumor escape from immune system during cancer progression. Lately, the anti-PD-L1 and -PD-1 immune therapies have become an important tool for treatment of advanced human cancers, including bladder cancer. However, the underlying mechanisms of PD-L1 expression in cancer are not fully understood. We found that coculture of murine bone marrow cells with bladder tumor cells promoted strong expression of PD-L1 in bone marrow-derived myeloid cells. Tumor-induced expression of PD-L1 was limited to F4/80(+) macrophages and Ly-6C(+) myeloid-derived suppressor cells. These PD-L1-expressing cells were immunosuppressive and were capable of eliminating CD8 T cells in vitro. Tumor-infiltrating PD-L1(+) cells isolated from tumor-bearing mice also exerted morphology of tumor-associated macrophages and expressed high levels of prostaglandin E2 (PGE2)-forming enzymes microsomal PGE2 synthase 1 (mPGES1) and COX2. Inhibition of PGE2 formation, using pharmacologic mPGES1 and COX2 inhibitors or genetic overexpression of PGE2-degrading enzyme 15-hydroxyprostaglandin dehydrogenase (15-PGDH), resulted in reduced PD-L1 expression. Together, our study demonstrates that the COX2/mPGES1/PGE2 pathway involved in the regulation of PD-L1 expression in tumor-infiltrating myeloid cells and, therefore, reprogramming of PGE2 metabolism in tumor microenvironment provides an opportunity to reduce immune suppression in tumor host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NSAIDs inhibit tumorigenesis, but how?

            Numerous epidemiologic studies have reported that the long-term use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with a significant decrease in cancer incidence and delayed progression of malignant disease. The use of NSAIDs has also been linked with reduced risk from cancer-related mortality and distant metastasis. Certain prescription-strength NSAIDs, such as sulindac, have been shown to cause regression of precancerous lesions. Unfortunately, the extended use of NSAIDs for chemoprevention results in potentially fatal side effects related to their COX-inhibitory activity and suppression of prostaglandin synthesis. Although the basis for the tumor growth-inhibitory activity of NSAIDs likely involves multiple effects on tumor cells and their microenvironment, numerous investigators have concluded that the underlying mechanism is not completely explained by COX inhibition. It may therefore be possible to develop safer and more efficacious drugs by targeting such COX-independent mechanisms. NSAID derivatives or metabolites that lack COX-inhibitory activity, but retain or have improved anticancer activity, support this possibility. Experimental studies suggest that apoptosis induction and suppression of β-catenin-dependent transcription are important aspects of their antineoplastic activity. Studies show that the latter involves phosphodiesterase inhibition and the elevation of intracellular cyclic GMP levels. Here, we review the evidence for COX-independent mechanisms and discuss progress toward identifying alternative targets and developing NSAID derivatives that lack COX-inhibitory activity but have improved antineoplastic properties. ©2013 AACR
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Understanding LAG-3 Signaling

              Lymphocyte activation gene 3 (LAG-3) is a cell surface inhibitory receptor with multiple biological activities over T cell activation and effector functions. LAG-3 plays a regulatory role in immunity and emerged some time ago as an inhibitory immune checkpoint molecule comparable to PD-1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. LAG-3 is the third inhibitory receptor to be exploited in human anti-cancer immunotherapies, and it is considered a potential next-generation cancer immunotherapy target in human therapy, right next to PD-1 and CTLA-4. Unlike PD-1 and CTLA-4, the exact mechanisms of action of LAG-3 and its relationship with other immune checkpoint molecules remain poorly understood. This is partly caused by the presence of non-conventional signaling motifs in its intracellular domain that are different from other conventional immunoregulatory signaling motifs but with similar inhibitory activities. Here we summarize the current understanding of LAG-3 signaling and its role in LAG-3 functions, from its mechanisms of action to clinical applications.
                Bookmark

                Author and article information

                Journal
                Cancer Prevention Research
                American Association for Cancer Research (AACR)
                1940-6207
                1940-6215
                April 01 2022
                January 05 2022
                April 01 2022
                January 05 2022
                : 15
                : 4
                : 225-231
                Article
                10.1158/1940-6207.CAPR-21-0227
                6c737e43-e8d7-4e70-a47c-5e398a6ec923
                © 2022
                History

                Comments

                Comment on this article