7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meropenem-Vaborbactam as Salvage Therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae–Producing KPC-31, a D179Y Variant of KPC-3

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A 68-year-old man had recurrent bacteremia by Klebsiella pneumoniae carbapenemase (KPC)–producing K. pneumoniae resistant to ceftazidime-avibactam and cefiderocol. The sequencing of a target region showed that it harbored a KPC-3 variant enzyme (D179Y; KPC-31), which confers resistance to ceftazidime-avibactam and restores meropenem susceptibility. The patient was successfully treated with meropenem-vaborbactam.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections.

          Thirty-seven carbapenem-resistant Enterobacteriaceae (CRE)-infected patients were treated with ceftazidime-avibactam. Clinical success and survival rates at 30 days were 59% (22/37) and 76% (28/37), respectively. In 23% (5/22) of clinical successes, CRE infections recurred within 90 days. Microbiologic failure rate was 27% (10/37). Ceftazidime-avibactam resistance was detected in 30% (3/10) of microbiologic failures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New β-Lactam–β-Lactamase Inhibitor Combinations

            The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam–β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa . Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa . Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales . Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa . Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii . Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales , with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016

              ABSTRACT The in vitro activity of the investigational siderophore cephalosporin, cefiderocol (formerly S-649266), was determined against a 2014–2016, 52-country, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae (n = 1,022), multidrug-resistant (MDR) Acinetobacter baumannii (n = 368), MDR Pseudomonas aeruginosa (n = 262), Stenotrophomonas maltophilia (n = 217), and Burkholderia cepacia (n = 4) using the Clinical and Laboratory Standards Institute (CLSI) standard broth microdilution method. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB), prepared according to a recently approved (2017), but not yet published, CLSI protocol, was used to test cefiderocol; all other antimicrobial agents were tested using CAMHB. The concentration of cefiderocol inhibiting 90% (MIC90) of isolates of carbapenem-nonsusceptible Enterobacteriaceae was 4 μg/ml; cefiderocol MICs ranged from 0.004 to 32 μg/ml, and 97.0% (991/1,022) of isolates demonstrated cefiderocol MICs of ≤4 μg/ml. The MIC90s for cefiderocol for MDR A. baumannii, MDR P. aeruginosa, and S. maltophilia were 8, 1, and 0.25 μg/ml, respectively, with 89.7% (330/368), 99.2% (260/262), and 100% (217/217) of isolates demonstrating cefiderocol MICs of ≤4 μg/ml. Cefiderocol MICs for B. cepacia ranged from 0.004 to 8 μg/ml. We conclude that cefiderocol demonstrated potent in vitro activity against a 2014–2016, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae, MDR A. baumannii, MDR P. aeruginosa, S. maltophilia, and B. cepacia isolates as 96.2% of all (1,801/1,873) isolates tested had cefiderocol MICs of ≤4 μg/ml.
                Bookmark

                Author and article information

                Journal
                Open Forum Infect Dis
                Open Forum Infect Dis
                ofid
                Open Forum Infectious Diseases
                Oxford University Press (US )
                2328-8957
                June 2021
                20 March 2021
                20 March 2021
                : 8
                : 6
                : ofab141
                Affiliations
                [1 ]Infectious Diseases Clinic, Department of Clinical and Experimental Medicine, Azienda Universitaria Ospedaliera Pisana , University of Pisa, Pisa, Italy
                [2 ]Microbiology Unit, Azienda Universitaria Ospedaliera Pisana , Pisa, Italy
                [3 ]Department of Molecular Medicine, “Sapienza” University of Rome , Rome, Italy
                Author notes
                Correspondence: Marco Falcone, MD, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Department of Clinical and Experimental Medicine, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy ( marco.falcone@ 123456unipi.it ).
                Article
                ofab141
                10.1093/ofid/ofab141
                8233566
                34189161
                69215891-781e-449c-9111-136119e8d213
                © The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 02 February 2021
                : 17 March 2021
                : 18 March 2021
                : 26 June 2021
                Page count
                Pages: 4
                Categories
                ID Teaching Cases
                AcademicSubjects/MED00290

                ceftazidime-avibactam resistant,klebsiella pneumoniae,kpc,kpc-3,meropenem-vaborbactam

                Comments

                Comment on this article