51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epithelial sodium channel abundance is decreased by an unfolded protein response induced by hyperosmolality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large shifts of osmolality occur in the kidney medulla as part of the urine concentrating mechanism. Hyperosmotic stress profoundly challenges cellular homeostasis and induces endoplasmic reticulum (ER) stress. Here, we examined the unfolded protein response (UPR) in hyperosmotically‐challenged principal cells of the kidney collecting duct (CD) and show its relevance in controlling epithelial sodium channel (ENaC) abundance, responsible for the final adjustment of Na + excretion. Dehydration increases medullary but not cortical osmolality. Q‐PCR analysis of microdissected CD of water‐deprived mice revealed increased aquaporin‐2 (AQP2) expression in outer medullary and cortical CD while ENaC abundance decreased in outer medullary but not cortical CD. Immunoblotting, Q‐PCR and immunofluorescence revealed that hyperosmolality induced a transient ER stress‐like response both ex vivo and in cultured CD principal cells and increased activity of the canonical UPR mediators PERK and ATF6. Both hyperosmolality and chemical induction of ER stress decreased ENaC expression in vitro. ENaC depletion by either stimulus was abolished by transcriptional inhibition and by the chemical chaperone 4‐phenylbutyric acid and was partly abrogated by either PERK or ATF6 silencing. Our data suggest that induction of the UPR by hyperosmolality may help preserve body fluid homeostasis under conditions of dehydration by uncoupling AQP2 and ENaC abundance in outer medullary CD.

          Abstract

          Hyperosmotic stress profoundly challenges cellular homeostasis and induces endoplasmic reticulum stress. We show that hyperosmolality triggers a unfolded protein response response in kidney collecting duct principal cells that decreases ENaC abundance. This may help preserve body fluid homeostasis under conditions of dehydration by uncoupling AQP2 and ENaC abundance in outer medullary CD.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          A trip to the ER: coping with stress.

          The accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) induces a coordinated adaptive program called the unfolded protein response (UPR). The UPR alleviates stress by upregulating protein folding and degradation pathways in the ER and inhibiting protein synthesis. With a basic conceptual framework for the UPR, including the identification of key mediators of the response, now in place, recent work has turned towards investigating how the response is regulated and how its effects radiate beyond the immediate realm of protein secretion. This review highlights advances in these areas and attempts to forecast important issues that must be addressed soon.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation

            Two seemingly unrelated experimental treatments inhibit receptor mediated endocytosis: (a) depletion of intracellular K+ (Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson. 1983. Cell. 33:273- 285); and (b) treatment with hypertonic media (Daukas, G., and S. H. Zigmond. 1985. J. Cell Biol. 101:1673-1679). Since the former inhibits the formation of clathrin-coated pits (Larkin, J. M., W. D. Donzell, and R. G. W. Anderson, 1986. J. Cell Biol. 103:2619-2627), we were interested in determining whether hypertonic treatment has the same effect, and if so, why. Fibroblasts (human or chicken) were incubated in normal saline made hypertonic with 0.45 M sucrose, then broken open by sonication and freeze-etched to generate replicas of their inner membrane surfaces. Whereas untreated cells display typical geodesic lattices of clathrin under each coated pit, hypertonic cells display in addition a number of empty clathrin "microcages". At first, these appear around the edges of normal coated pit lattices. With further time in hypertonic medium, however, normal lattices largely disappear and are replaced by accumulations of microcages. Concomitantly, low density lipoprotein (LDL) receptors lose their normal clustered distribution and become dispersed all over the cell surface, as seen by fluorescence microscopy and freeze-etch electron microscopy of LDL attached to the cell surface. Upon return to normal medium at 37 degrees C, these changes promptly reverse. Within 2 min, small clusters of LDL reappear on the surfaces of cells and normal clathrin lattices begin to reappear inside; the size and number of these receptor/clathrin complexes returns to normal over the next 10 min. Thus, in spite of their seeming unrelatedness, both K+ depletion and hypertonic treatment cause coated pits to disappear, and both induce abnormal clathrin polymerization into empty microcages. This suggests that in both cases, an abnormal formation of microcages inhibits endocytosis by rendering clathrin unavailable for assembly into normal coated pits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning and expression of apical membrane water channel of rat kidney collecting tubule.

              Concentrating urine is mandatory for most mammals to prevent water loss from the body. Concentrated urine is produced in response to vasopressin by the transepithelial recovery of water from the lumen of the kidney collecting tubule through highly water-permeable membranes. In this nephron segment, vasopressin regulates water permeability by endo- and exocytosis of water channels from or to the apical membrane. CHIP28 is a water channel in red blood cells and the kidney proximal tubule, but it is not expressed in the collecting tubule. Here we report the cloning of the complementary DNA for WCH-CD, a water channel of the apical membrane of the kidney collecting tubule. WCH-CD is 42% identical in amino-acid sequence to CHIP28. WCH-CD transcripts are detected only in the collecting tubule of the kidney. Immunohistochemically, WCH-CD is localized to the apical region of the kidney collecting tubule cells. Expression of WCH-CD in Xenopus oocytes markedly increases osmotic water permeability. The functional expression and the limited localization of WCH-CD to the apical region of the kidney collecting tubule suggest that WCH-CD is the vasopressin-regulated water channel.
                Bookmark

                Author and article information

                Journal
                Physiol Rep
                Physiol Rep
                physreports
                phy2
                Physiological Reports
                Wiley Periodicals, Inc.
                2051-817X
                November 2014
                20 November 2014
                : 2
                : 11
                : e12169
                Affiliations
                [1 ]UPMC/INSERM/Paris Descartes U1138 CNRS ERL 8228, Equipe 3 Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
                [2 ]Department of Cellular Physiology and Metabolism and Service of Nephrology, University Medical Center, University of Geneva, Geneva, Switzerland
                Author notes
                CorrespondenceUdo Hasler, Department of Cellular Physiology and Metabolism, Faculty of Medicine, University of Geneva, CMU, 1 Rue Michel‐Servet, 1211 Geneva 4, Switzerland. Tel: (+41) 22 379 52 61 Fax: (+41) 22 379 52 60 E‐mail: Udo.Hasler@ 123456unige.ch
                Article
                phy212169
                10.14814/phy2.12169
                4255800
                25413317
                64e8f44f-75c6-4ab2-9092-71b80ce9c06b
                © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 August 2014
                : 10 September 2014
                : 17 September 2014
                Categories
                Original Research

                aquaporin‐2,endoplasmic reticulum stress,epithelial sodium channel,homeostasis,hyperosmolality,kidney collecting duct,unfolded protein response

                Comments

                Comment on this article