850
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stress Granules in the Viral Replication Cycle

      review-article
      1 , * , 2
      Viruses
      Molecular Diversity Preservation International (MDPI)
      stress granules, stress, PKR, eIF2

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As intracellular parasites, viruses require a host cell in order to replicate. However, they face a series of cellular responses against infection. One of these responses is the activation of the double-stranded RNA (dsRNA)-activated protein kinase R (PKR). PKR phosphorylates the α subunit of eukaryotic translation initiation factor 2 (eIF2α), which in turn results in global protein synthesis inhibition and formation of stress granules (SGs). Recent studies have shown that SGs can interfere with the replicative cycle of certain viruses. This review addresses how viruses have evolved different control strategies at the SG level to ensure an efficient replication cycle during the cellular stress response triggered by the viral infection.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Coping with stress: eIF2 kinases and translational control.

          In response to environmental stresses, a family of protein kinases phosphorylate eIF2 (eukaryotic initiation factor 2) to alleviate cellular injury or alternatively induce apoptosis. Phosphorylation of eIF2 reduces global translation, allowing cells to conserve resources and to initiate a reconfiguration of gene expression to effectively manage stress conditions. Accompanying this general protein synthesis control, eIF2 phosphorylation induces translation of specific mRNAs, such as that encoding the bZIP (basic leucine zipper) transcriptional regulator ATF4 (activating transcription factor 4). ATF4 also enhances the expression of additional transcription factors, ATF3 and CHOP (CCAAT/enhancer-binding protein homologous protein)/GADD153 (growth arrest and DNA-damage-inducible protein), that assist in the regulation of genes involved in metabolism, the redox status of the cells and apoptosis. Reduced translation by eIF2 phosphorylation can also lead to activation of stress-related transcription factors, such as NF-kappaB (nuclear factor kappaB), by lowering the steady-state levels of short-lived regulatory proteins such as IkappaB (inhibitor of NF-kappaB). While many of the genes induced by eIF2 phosphorylation are shared between different environmental stresses, eIF2 kinases function in conjunction with other stress-response pathways, such as those regulated by mitogen-activated protein kinases, to elicit gene expression programmes that are tailored for the specific stress condition. Loss of eIF2 kinase pathways can have important health consequences. Mice devoid of the eIF2 kinase GCN2 [general control non-derepressible-2 or EIF2AK4 (eIF2alpha kinase 4)] show sensitivity to nutritional deficiencies and aberrant eating behaviours, and deletion of PEK [pancreatic eIF2alpha kinase or PERK (RNA-dependent protein kinase-like endoplasmic reticulum kinase) or EIF2AK3] leads to neonatal insulin-dependent diabetes, epiphyseal dysplasia and hepatic and renal complications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs.

            Caprin-1 is a ubiquitously expressed, well-conserved cytoplasmic phosphoprotein that is needed for normal progression through the G(1)-S phase of the cell cycle and occurs in postsynaptic granules in dendrites of neurons. We demonstrate that Caprin-1 colocalizes with RasGAP SH3 domain binding protein-1 (G3BP-1) in cytoplasmic RNA granules associated with microtubules and concentrated in the leading and trailing edge of migrating cells. Caprin-1 exhibits a highly conserved motif, F(M/I/L)Q(D/E)Sx(I/L)D that binds to the NTF-2-like domain of G3BP-1. The carboxy-terminal region of Caprin-1 selectively bound mRNA for c-Myc or cyclin D2, this binding being diminished by mutation of the three RGG motifs and abolished by deletion of the RGG-rich region. Overexpression of Caprin-1 induced phosphorylation of eukaryotic translation initiation factor 2alpha (eIF-2alpha) through a mechanism that depended on its ability to bind mRNA, resulting in global inhibition of protein synthesis. However, cells lacking Caprin-1 exhibited no changes in global rates of protein synthesis, suggesting that physiologically, the effects of Caprin-1 on translation were limited to restricted subsets of mRNAs. Overexpression of Caprin-1 induced the formation of cytoplasmic stress granules (SG). Its ability to bind RNA was required to induce SG formation but not necessarily its ability to enter SG. The ability of Caprin-1 or G3BP-1 to induce SG formation or enter them did not depend on their association with each other. The Caprin-1/G3BP-1 complex is likely to regulate the transport and translation of mRNAs of proteins involved with synaptic plasticity in neurons and cellular proliferation and migration in multiple cell types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress granules: sites of mRNA triage that regulate mRNA stability and translatability.

              Mammalian stress granules (SGs) are cytoplasmic domains into which mRNAs are sorted dynamically in response to phosphorylation of eukaryotic initiation factor (eIF) 2alpha, a key regulatory step in translational initiation. The activation of one or more of the eIF2alpha kinases leads to SG assembly by decreasing the levels of eIF2-GTP-tRNA(Met), the ternary complex that is normally required for loading the initiator methionine onto the 48 S preinitiation complex to begin translation. This stress-induced scarcity of eIF2-GTP-tRNA(Met) allows the RNA-binding proteins TIA-1 (T-cell internal antigen-1) and TIAR (TIA-1-related protein) to bind the 48 S complex in lieu of the ternary complex, thereby promoting polysome disassembly and the concurrent routing of the mRNA into a SG. The actual formation of SGs occurs upon auto-aggregation of the prion-like C-termini of TIA-1 proteins; this aggregation is reversed in vivo by overexpression of the heat-shock protein (HSP) chaperone HSP70. Remarkably, HSP70 mRNA is excluded from SGs and is preferentially translated during stress, indicating that the RNA composition of the SG is selective. Moreover, the effects of HSP70 on TIA aggregation suggest a feedback loop whereby HSP70 synthesis is auto-regulated. Proteins that promote mRNA stability [e.g. HuR (Hu protein R)] and destabilize mRNA [i.e. tristetraprolin (TTP)] are also recruited to SGs, suggesting that SGs effect a process of mRNA triage, by promoting polysome disassembly and routing mRNAs to cytoplasmic domains enriched for HuR and TTP. This model reveals connections between the eIF2alpha kinase system, mRNA stability and cellular chaperone levels.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                Molecular Diversity Preservation International (MDPI)
                1999-4915
                November 2011
                18 November 2011
                : 3
                : 11
                : 2328-2338
                Affiliations
                [1 ] Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, Col. Industrial Ánimas, 91190, Xalapa, Veracruz, México
                [2 ] Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62210, Cuernavaca, Morelos, México
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: hmontero@ 123456uv.mx ; Tel.: +52-22-88-41-89-00 (ext. 13323); Fax: +52-22-88-41-89-35.
                Article
                viruses-03-02328
                10.3390/v3112328
                3230854
                22163347
                6483748a-ee6d-4e6e-8390-16a2eef18d75
                © 2011 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 13 September 2011
                : 13 November 2011
                : 14 November 2011
                Categories
                Review

                Microbiology & Virology
                eif2,pkr,stress granules,stress
                Microbiology & Virology
                eif2, pkr, stress granules, stress

                Comments

                Comment on this article