5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Salicylic Acid Induced Photosynthetic Adaptability of Raphanus sativus to Salt Stress is Associated with Antioxidant Capacity

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of salinity tolerance.

            The physiological and molecular mechanisms of tolerance to osmotic and ionic components of salinity stress are reviewed at the cellular, organ, and whole-plant level. Plant growth responds to salinity in two phases: a rapid, osmotic phase that inhibits growth of young leaves, and a slower, ionic phase that accelerates senescence of mature leaves. Plant adaptations to salinity are of three distinct types: osmotic stress tolerance, Na(+) or Cl() exclusion, and the tolerance of tissue to accumulated Na(+) or Cl(). Our understanding of the role of the HKT gene family in Na(+) exclusion from leaves is increasing, as is the understanding of the molecular bases for many other transport processes at the cellular level. However, we have a limited molecular understanding of the overall control of Na(+) accumulation and of osmotic stress tolerance at the whole-plant level. Molecular genetics and functional genomics provide a new opportunity to synthesize molecular and physiological knowledge to improve the salinity tolerance of plants relevant to food production and environmental sustainability.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS

              D ARNON (1949)
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Plant Growth Regulation
                J Plant Growth Regul
                Springer Science and Business Media LLC
                0721-7595
                1435-8107
                June 2020
                September 24 2019
                June 2020
                : 39
                : 2
                : 809-822
                Article
                10.1007/s00344-019-10024-z
                6418e785-6fb7-46da-a828-fe1a72ffd787
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article