3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Dietary Organic Acids and Botanicals on Metabolic Status and Milk Parameters in Mid–Late Lactating Goats

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The microencapsulated mixture of organic acids and pure botanicals (OA/PB) has never been evaluated in goats. The aim of this study was to extend the analysis to mid–late lactating dairy goats, evaluating the effects of OA/PB supplementation on the metabolic status, milk bacteriological and composition characteristics, and milk yield. Eighty mid–late lactating Saanen goats were randomly assigned to two groups: one group was fed the basal total balanced ration (TMR) (CRT; n = 40) and the other was fed a diet that was TMR supplemented with 10 g/head of OA/PB (TRT; n = 40) for 54 days during the summer period. The temperature–humidity index (THI) was recorded hourly. On days T0, T27, and T54, the milk yield was recorded, and blood and milk samples were collected during the morning milking. A linear mixed model was used, considering the fixed effects: diet, time, and their interaction. The THI data (mean ± SD: 73.5 ± 3.83) show that the goats did not endure heat stress. The blood parameters fell within the normal range, confirming that their metabolic status was not negatively influenced by OA/PB supplementation. OA/PB increased the milk fat content (p = 0.04) and milk coagulation index (p = 0.03), which are effects that are looked on as favorable by the dairy industry in relation to cheese production.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of heat stress on postabsorptive metabolism and energetics.

            Environmental-induced hyperthermia compromises efficient animal production and jeopardizes animal welfare. Reduced productive output during heat stress was traditionally thought to result from decreased nutrient intake. Our observations challenge this dogma and indicate that heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independent of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident through changes such as basal and stimulated circulating insulin levels. Hepatocyte and myocyte metabolism also show clear differences in glucose production and use during heat stress. Perhaps most intriguing, given the energetic shortfall of the heat-stressed animal, is the apparent lack of fat mobilization from adipose tissue coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of heat-stress on production in dairy cattle.

              Bruce West (2003)
              The southeastern United States is characterized as humid subtropical and is subject to extended periods of high ambient temperature and relative humidity. Because the primary nonevaporative means of cooling for the cow (radiation, conduction, convection) become less effective with rising ambient temperature, the cow becomes increasingly reliant upon evaporative cooling in the form of sweating and panting. High relative humidity compromises evaporative cooling, so that under hot, humid conditions common to the Southeast in summer the dairy cow cannot dissipate sufficient body heat to prevent a rise in body temperature. Increasing air temperature, temperature-humidity index and rising rectal temperature above critical thresholds are related to decreased dry matter intake (DMI) and milk yield and to reduced efficiency of milk yield. Modifications including shade, barns which enhance passive ventilation, and the addition of fans and sprinklers increase body heat loss, lowering body temperature and improving DMI. New technologies including tunnel ventilation are being investigated to determine if they offer cooling advantages. Genetic selection for heat tolerance may be possible, but continued selection for greater performance in the absence of consideration for heat tolerance will result in greater susceptibility to heat stress. The nutritional needs of the cow change during heat stress, and ration reformulation to account for decreased DMI, the need to increase nutrient density, changing nutrient requirements, avoiding nutrient excesses and maintenance of normal rumen function is necessary. Maintaining cow performance in hot, humid climatic conditions in the future will likely require improved cooling capability, continued advances in nutritional formulation, and the need for genetic advancement which includes selection for heat tolerance or the identification of genetic traits which enhance heat tolerance.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Animals
                Animals
                MDPI AG
                2076-2615
                March 2023
                February 22 2023
                : 13
                : 5
                : 797
                Article
                10.3390/ani13050797
                10000138
                36899655
                61b5496c-fc7f-4326-a572-94a512f4016b
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article