15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Regulatory T cells in cancer immunotherapy

          FOXP3-expressing regulatory T (Treg) cells, which suppress aberrant immune response against self-antigens, also suppress anti-tumor immune response. Infiltration of a large number of Treg cells into tumor tissues is often associated with poor prognosis. There is accumulating evidence that the removal of Treg cells is able to evoke and enhance anti-tumor immune response. However, systemic depletion of Treg cells may concurrently elicit deleterious autoimmunity. One strategy for evoking effective tumor immunity without autoimmunity is to specifically target terminally differentiated effector Treg cells rather than all FOXP3+ T cells, because effector Treg cells are the predominant cell type in tumor tissues. Various cell surface molecules, including chemokine receptors such as CCR4, that are specifically expressed by effector Treg cells can be the candidates for depleting effector Treg cells by specific cell-depleting monoclonal antibodies. In addition, other immunological characteristics of effector Treg cells, such as their high expression of CTLA-4, active proliferation, and apoptosis-prone tendency, can be exploited to control specifically their functions. For example, anti-CTLA-4 antibody may kill effector Treg cells or attenuate their suppressive activity. It is hoped that combination of Treg-cell targeting (e.g., by reducing Treg cells or attenuating their suppressive activity in tumor tissues) with the activation of tumor-specific effector T cells (e.g., by cancer vaccine or immune checkpoint blockade) will make the current cancer immunotherapy more effective.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The sympathetic nervous system induces a metastatic switch in primary breast cancer.

            Metastasis to distant tissues is the chief driver of breast cancer-related mortality, but little is known about the systemic physiologic dynamics that regulate this process. To investigate the role of neuroendocrine activation in cancer progression, we used in vivo bioluminescence imaging to track the development of metastasis in an orthotopic mouse model of breast cancer. Stress-induced neuroendocrine activation had a negligible effect on growth of the primary tumor but induced a 30-fold increase in metastasis to distant tissues including the lymph nodes and lung. These effects were mediated by β-adrenergic signaling, which increased the infiltration of CD11b(+)F4/80(+) macrophages into primary tumor parenchyma and thereby induced a prometastatic gene expression signature accompanied by indications of M2 macrophage differentiation. Pharmacologic activation of β-adrenergic signaling induced similar effects, and treatment of stressed animals with the β-antagonist propranolol reversed the stress-induced macrophage infiltration and inhibited tumor spread to distant tissues. The effects of stress on distant metastasis were also inhibited by in vivo macrophage suppression using the CSF-1 receptor kinase inhibitor GW2580. These findings identify activation of the sympathetic nervous system as a novel neural regulator of breast cancer metastasis and suggest new strategies for antimetastatic therapies that target the β-adrenergic induction of prometastatic gene expression in primary breast cancers. ©2010 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity

              Interferon gamma (IFNγ) is a key moderator of cell-mediated immunity with diverse, mainly pro-inflammatory actions on immunocytes and target tissue. Recent studies have shown it may enhance anti-tumor and antiviral effects of CD8 T cells. Here we investigate the mechanisms by which IFNγ mediates CD8 T-cell cytotoxic function. We show that in vivo, antigen-specific CD8 T cells that produce INFγ are necessary to effect rejection of skin grafts expressing OVA as a transgene in keratinocytes. The ability of CD8 T cells to produce IFNγ enhanced their ability to migrate to the site of antigen-presenting skin cells. By in vivo imaging, we show that CTL motility, particularly speed, during graft rejection was enhanced by locally available IFNγ. We then used a reductionist two-cell model of CTL effectors and keratinocyte targets to investigate the effects of locally available (paracrine) and CTL-producing (autocrine) IFNγ on the motility behavior and killing ability of the CTL. Using live-cell imaging by prolonged time-lapse microscopy of primary effector CD8 T cells and antigen-expressing primary keratinocyte targets, we show that CD8 T-cell cytotoxic function and motility is enhanced by locally available IFNγ. Conversely, deprivation of either autocrine or paracrine IFNγ, or blockade of IFNγ signaling to CTL markedly reduced their cytotoxic function, their kinematics, and effector cell survival. We conclude that in vitro and in vivo, autocrine production of IFNγ by CTL enhances their motility and promotes killing of primary target keratinocytes. The absolute need for local IFNγ to enable cytotoxic CD8 T-cell function is of significance for immunotherapy for chronic viral infection and for cancer.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Science and Business Media LLC
                1097-6256
                1546-1726
                July 8 2019
                Article
                10.1038/s41593-019-0430-3
                31285612
                60b49f0e-6b1e-4008-af5e-4d0ab441e248
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article