1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthesis and molecular docking of new indeno[1,2-d]imidazole, indeno[1,2-e]triazine, indeno[1,2-c]pyrazole, and indeno[1,2-b]pyrrole polycyclic compounds as antibacterial and antioxidant agents

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Structural evidence that peroxiredoxin catalytic power is based on transition-state stabilization.

          Peroxiredoxins (Prxs) are important peroxidases associated with both antioxidant protection and redox signaling. They use a conserved Cys residue to reduce peroxide substrates. The Prxs have a remarkably high catalytic efficiency that makes them a dominant player in cell-wide peroxide reduction, but the origins of their high activity have been mysterious. We present here a novel structure of human PrxV at 1.45 A resolution that has a dithiothreitol bound in the active site with its diol moiety mimicking the two oxygens of a peroxide substrate. This suggests diols and similar di-oxygen compounds as a novel class of competitive inhibitors for the Prxs. Common features of this and other structures containing peroxide, peroxide-mimicking ligands, or peroxide-mimicking water molecules reveal hydrogen bonding and steric factors that promote its high reactivity by creating an oxygen track along which the peroxide oxygens move as the reaction proceeds. Key insights include how the active-site microenvironment activates both the peroxidatic cysteine side chain and the peroxide substrate and how it is exquisitely well suited to stabilize the transition state of the in-line S(N)2 substitution reaction that is peroxidation. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5'-methyl group of the noviose.

            DNA gyrase is a major bacterial protein that is involved in replication and transcription and catalyzes the negative supercoiling of bacterial circular DNA. DNA gyrase is a known target for antibacterial agents since its blocking induces bacterial death. Quinolones, coumarins, and cyclothialidines have been designed to inhibit gyrase. Significant improvements can still be envisioned for a better coumarin-gyrase interaction. In this work, we obtained the crystal costructures of the natural coumarin clorobiocin and a synthetic analogue with the 24 kDa gyrase fragment. We used isothermal titration microcalorimetry and differential scanning calorimetry to obtain the thermodynamic parameters representative of the molecular interactions occurring during the binding process between coumarins and the 24 kDa gyrase fragment. We provide the first experimental evidence that clorobiocin binds gyrase with a stronger affinity than novobiocin. We also demonstrate the crucial role of both the hydroxybenzoate isopentenyl moiety and the 5'-alkyl group on the noviose of the coumarins in the binding affinity for gyrase.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Chemistry of Ninhydrin.

                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Molecular Structure
                Journal of Molecular Structure
                Elsevier BV
                00222860
                October 2023
                October 2023
                : 1289
                : 135763
                Article
                10.1016/j.molstruc.2023.135763
                5fb2ce97-55cc-47c7-830b-dbcdf5bb2949
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article