34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Autism spectrum disorder (ASD) is characterized by three core behavioral domains: social deficits, impaired communication, and repetitive behaviors. Glutamatergic/GABAergic imbalance has been found in various preclinical models of ASD. Additionally, autoimmunity immune dysfunction, and neuroinflammation are also considered as etiological mechanisms of this disorder. This study aimed to elucidate the relationship between glutamatergic/ GABAergic imbalance and neuroinflammation as two recently-discovered autism-related etiological mechanisms.

          Methods

          Twenty autistic patients aged 3 to 15 years and 19 age- and gender-matched healthy controls were included in this study. The plasma levels of glutamate, GABA and glutamate/GABA ratio as markers of excitotoxicity together with TNF-α, IL-6, IFN-γ and IFI16 as markers of neuroinflammation were determined in both groups.

          Results

          Autistic patients exhibited glutamate excitotoxicity based on a much higher glutamate concentration in the autistic patients than in the control subjects. Unexpectedly higher GABA and lower glutamate/GABA levels were recorded in autistic patients compared to control subjects. TNF-α and IL-6 were significantly lower, whereas IFN-γ and IFI16 were remarkably higher in the autistic patients than in the control subjects.

          Conclusion

          Multiple regression analysis revealed associations between reduced GABA level, neuroinflammation and glutamate excitotoxicity. This study indicates that autism is a developmental synaptic disorder showing imbalance in GABAergic and glutamatergic synapses as a consequence of neuroinflammation.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Advances in autism genetics: on the threshold of a new neurobiology.

          Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevated immune response in the brain of autistic patients.

            This study determined immune activities in the brain of ASD patients and matched normal subjects by examining cytokines in the brain tissue. Our results showed that proinflammatory cytokines (TNF-alpha, IL-6 and GM-CSF), Th1 cytokine (IFN-gamma) and chemokine (IL-8) were significantly increased in the brains of ASD patients compared with the controls. However the Th2 cytokines (IL-4, IL-5 and IL-10) showed no significant difference. The Th1/Th2 ratio was also significantly increased in ASD patients. ASD patients displayed an increased innate and adaptive immune response through the Th1 pathway, suggesting that localized brain inflammation and autoimmune disorder may be involved in the pathogenesis of ASD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Is there more to GABA than synaptic inhibition?

              In the mature brain, GABA (gamma-aminobutyric acid) functions primarily as an inhibitory neurotransmitter. But it can also act as a trophic factor during nervous system development to influence events such as proliferation, migration, differentiation, synapse maturation and cell death. GABA mediates these processes by the activation of traditional ionotropic and metabotropic receptors, and probably by both synaptic and non-synaptic mechanisms. However, the functional properties of GABA receptor signalling in the immature brain are significantly different from, and in some ways opposite to, those found in the adult brain. The unique features of the early-appearing GABA signalling systems might help to explain how GABA acts as a developmental signal.
                Bookmark

                Author and article information

                Contributors
                elansary@ksu.edu.sa
                ayadh2@gmail.com
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                19 November 2014
                19 November 2014
                2014
                : 11
                : 1
                : 189
                Affiliations
                [ ]Biochemistry Department, Science College, King Saud University, PO box 22452, 11495 Riyadh, Saudi Arabia
                [ ]Autism Research and Treatment Center, Riyadh, Saudi Arabia
                [ ]Shaik Al-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
                [ ]Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
                [ ]Medicinal Chemistry Department, National Research Center, Dokki, Cairo, Egypt
                Article
                189
                10.1186/s12974-014-0189-0
                4243332
                25407263
                5a686615-deca-4368-bb8b-d039384e90dd
                © El-Ansary and Al-Ayadhi; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 September 2014
                : 27 October 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Neurosciences
                autism,glutamate excitotoxicity,gamma aminobutyric acid (gaba),glutamate/gaba,tumor necrosis factor-α,interleukin-6,interferon-gamma,interferon-gamma-inducible protein 16

                Comments

                Comment on this article