15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Greenhouse gas and energy fluxes in a boreal peatland forest after clear-cutting

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. The most common forest management method in Fennoscandia is rotation forestry, including clear-cutting and forest regeneration. In clear-cutting, stem wood is removed and the logging residues are either removed or left on site. Clear-cutting changes the microclimate and vegetation structure at the site, both of which affect the site's carbon balance. Peat soils with poor aeration and high carbon densities are especially prone to such changes, and significant changes in greenhouse gas exchange can be expected. We measured carbon dioxide (CO2) and energy fluxes with the eddy covariance method for 2 years (April 2016–March 2018) after clear-cutting a drained peatland forest. We observed a significant rise (23 cm) in the water table level and a large CO2 source (first year: 3086±148 g CO2 m−2 yr−1; second year: 2072±124 g CO2 m−2 yr−1). These large CO2 emissions resulted from the very low gross primary production (GPP) following the removal of photosynthesizing trees and the decline of ground vegetation, unable to compensate for the decomposition of logging residues and peat. During the second summer (June–August) after the clear-cutting, GPP had already increased by 96 % and total ecosystem respiration decreased by 14 % from the previous summer. The mean daytime ratio of sensible to latent heat flux decreased after harvesting from 2.6 in May 2016 to 1.0 in August 2016, and in 2017 it varied mostly within 0.6–1.0. In April–September, the mean daytime sensible heat flux was 33 % lower and latent heat flux 40 % higher in 2017, probably due to the recovery of ground vegetation that increased evapotranspiration and albedo of the site. In addition to CO2 and energy fluxes, we measured methane (CH4) and nitrous oxide (N2O) fluxes with manual chambers. After the clear-cutting, the site turned from a small CH4 sink into a small source and from N2O neutral to a significant N2O source. Compared to the large CO2 emissions, the 100-year global warming potential (GWP100) of the CH4 emissions was negligible. Also, the GWP100 due to increased N2O emissions was less than 10 % of that of the CO2 emission change.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          On the Temperature Dependence of Soil Respiration

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stability of organic carbon in deep soil layers controlled by fresh carbon supply.

            The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest

                Bookmark

                Author and article information

                Journal
                Biogeosciences
                Biogeosciences
                Copernicus GmbH
                1726-4189
                2019
                September 30 2019
                : 16
                : 19
                : 3703-3723
                Article
                10.5194/bg-16-3703-2019
                581c94fe-e959-4e3b-ab14-fb9684c7d964
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article