42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Anopheles subpictus s.l., an important malaria vector in Sri Lanka, is a complex of four morphologically identified sibling species A-D. Species A-D reportedly differ in bio-ecological traits that are important for vector control. We investigated possible variations that had not been reported previously, in the susceptibility to common insecticides and resistance mechanisms among the An. subpictus sibling species.

          Methods

          Adult An. subpictus were collected from localities in four administrative districts in the dry zone of Sri Lanka. Single female isoprogeny lines were established and sibling species status determined according to reported egg morphology. World Health Organization's standard protocols were used for insecticide bioassays and biochemical assays to determine insecticide susceptibility and resistance mechanisms. Susceptibility of mosquitoes was tested against DDT (5%), malathion (4%), deltamethrin (0.05%) and λ-cyhalothrin (0.05%). Biochemical basis for resistance was determined through assaying for esterase, glutathione-S-transferase and monooxygenase activities and the insensitivity of acetycholinesterase (AChE) to propoxur inhibition.

          Results

          All sibling species were highly resistant to DDT. However there were significant differences among the sibling species in their susceptibility to the other tested insecticides. Few species A could be collected for testing, and where testing was possible, species A tended to behave more similarly to species C and D than to B. Species B was more susceptible to all the tested insecticides than the other sibling species. This difference may be attributed to the predominance of species B in coastal areas where selection pressure due to indoor residual spraying of insecticides (IRS) was lower. However there were significant differences between the more inland species C and D mainly towards pyrethroids. Higher GST activities in species C and D might have contributed to their greater DDT resistance than species B. Malathion resistance in both species C and D may be caused by elevated GST activity and an altered insensitive target site in AChE. In addition, a carboxylesterase based malathion resistance mechanisms was also detected in species C and D. Elevated esterase levels in species C and D might have contributed to the low levels of pyrethroid resistance. However an absence of elevated activity of monooxygenases in species B, C and D indicates that monooxygenases are unlikely to be the cause of this partial resistance to pyrethroids.

          Conclusions

          The differences in insecticide susceptibility and insecticide resistance mechanism shown by An. subpictus sibling species are important considerations for developing the malaria control and eradication program in Sri Lanka. Similar studies on species complexes of other anopheline vectors of malaria are necessary for effective malaria control worldwide. The differential susceptibility findings are also consistent with most, if not all, morphologically identified An. subpictus species B in Sri Lanka belonging to the An. sundaicus complex. There is a need therefore to develop molecular techniques that can be used to differentiate morphologically similar anopheline species in field conditions for more effective vector control.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The molecular basis of insecticide resistance in mosquitoes.

          Insecticide resistance is an inherited characteristic involving changes in one or more insect gene. The molecular basis of these changes are only now being fully determined, aided by the availability of the Drosophila melanogaster and Anopheles gambiae genome sequences. This paper reviews what is currently known about insecticide resistance conferred by metabolic or target site changes in mosquitoes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

            Background The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka

              Background The current status of insecticide resistance and the underlying resistance mechanisms were studied in the major vector of malaria, Anopheles culicifacies, and the secondary vector, Anopheles subpictus in five districts (Anuradhapura, Kurunegala, Moneragala, Puttalam and Trincomalee) of Sri Lanka. Eight other anophelines, Anopheles annularis, Anopheles barbirostris, Anopheles jamesii, Anopheles nigerrimus, Anopheles peditaeniatus, Anopheles tessellatus, Anopheles vagus and Anopheles varuna from Anuradhapura district were also tested. Methods Adult females were exposed to the WHO discriminating dosages of DDT, malathion, fenitrothion, propoxur, λ-cyhalothrin, cyfluthrin, cypermethrin, deltamethrin, permethrin and etofenprox. The presence of metabolic resistance by esterase, glutathione S-transferase (GST) and monooxygenase-based mechanisms, and the sensitivity of the acetylcholinesterase target site were assessed using synergists, and biochemical, and metabolic techniques. Results All the anopheline species had high DDT resistance. All An. culicifacies and An. subpictus populations were resistant to malathion, except An. culicifacies from Kurunegala, where there was no malathion carboxylesterase activity. Kurunegala and Puttalam populations of An. culicifacies were susceptible to fenitrothion. All the An. culicifacies populations were susceptible to carbamates. Both species were susceptible to the discriminating dosages of cypermethrin and cyfluthrin, but had different levels of resistance to other pyrethroids. Of the 8 other anophelines, only An. nigerrimus and An. peditaeniatus were resistant to all the insecticides tested, probably due to their high exposure to the insecticides used in agriculture. An. vagus showed some resistance to permethrin. Esterases, GSTs and monooxygenases were elevated in both An. culicifacies and An. subpictus. AChE was most sensitive to insecticides in Kurunegala and Trincomalee An. culicifacies populations and highly insensitive in the Trincomalee An. subpictus population. Conclusion The complexity of the resistance segregating in these field populations underlines the need for new molecular tools to identify the genomic diversity, differential upregulation and different binding specificities of resistance conferring genes, and the presence of different subspecies with different vectorial capacities.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2012
                10 February 2012
                : 5
                : 34
                Affiliations
                [1 ]Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka
                [2 ]Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
                [3 ]Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
                Article
                1756-3305-5-34
                10.1186/1756-3305-5-34
                3317438
                22325737
                54e8823d-c1be-43f7-95c8-85d83059d463
                Copyright ©2012 Surendran et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 December 2011
                : 10 February 2012
                Categories
                Research

                Parasitology
                insecticide resistance,sibling species,anopheles subpictus s.l.,sri lanka,resistance mechanism

                Comments

                Comment on this article