1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Toward a Solution of the “Peruvian Puzzle”: Pelagic Food-Web Structure and Trophic Interactions in the Northern Humboldt Current Upwelling System Off Peru

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The northern Humboldt Current upwelling system (HCS) belongs to the most productive marine ecosystems, providing five to eight times higher fisheries landings per unit area than other coastal upwelling systems. To solve this “Peruvian puzzle”, to elucidate the pelagic food-web structure and to better understand trophic interactions in the HCS, a combined stable isotope and fatty acid trophic biomarker approach was adopted for key zooplankton taxa and higher trophic positions with an extensive spatial coverage from 8.5 to 16°S and a vertical range down to 1,000 m depth. A pronounced regional shift by up to ∼5‰ in the δ 15N baseline of the food web occurred from North to South. Besides regional shifts, δ 15N ratios of particulate organic matter (POM) also tended to increase with depth, with differences of up to 3.8‰ between surface waters and the oxygen minimum zone. In consequence, suspension-feeding zooplankton permanently residing at depth had up to ∼6‰ higher δ 15N signals than surface-living species or diel vertical migrants. The comprehensive data set covered over 20 zooplankton taxa and indicated that three crustacean species usually are key in the zooplankton community, i.e., the copepods Calanus chilensis at the surface and Eucalanus inermis in the pronounced OMZ and the krill Euphausia mucronata, resulting in an overall low number of major trophic pathways toward anchovies. In addition, the semi-pelagic squat lobster Pleuroncodes monodon appears to play a key role in the benthic-pelagic coupling, as indicated by highest δ 13C’ ratios of −14.7‰. If feeding on benthic resources and by diel vertical migration, they provide a unique pathway for returning carbon and energy from the seafloor to the epipelagic layer, increasing the food supply for pelagic fish. Overall, these mechanisms result in a very efficient food chain, channeling energy toward higher trophic positions and partially explaining the “Peruvian puzzle” of enormous fish production in the HCS.

          Related collections

          Most cited references116

          • Record: found
          • Abstract: not found
          • Article: not found

          Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stable Isotopes in Ecosystem Studies

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of aquatic food chains using nitrogen isotopes.

              Recent studies have shown the utility of delta(15)N to model trophic structure and contaminant bioaccumulation in aquatic food webs. However, cross-system comparisons in delta(15)N can be complicated by differences in delta(15)N at the base of the food chain. Such baseline variation in delta(15)N is difficult to resolve using plankton because of the large temporal variability in the delta(15)N of small organisms that have fast nitrogen turnover. Comparisons using large primary consumers, which have stable tissue isotopic signatures because of their slower nitrogen turnover, show that delta(15)N increases markedly with the human population density in the lake watershed. This shift in delta(15)N likely reflects the high delta(15)N of human sewage. Correcting for this baseline variation in delta(15)N, we report that, contrary to expectations based on previous food-web analysis, the food chains leading up to fish varied by about only one trophic level among the 40 lakes studied. Our results also suggest that the delta(15)N signatures of nitrogen at the base of the food chain will provide a useful tool in the assessment of anthropogenic nutrient inputs.
                Bookmark

                Author and article information

                Journal
                Frontiers in Marine Science
                Front. Mar. Sci.
                Frontiers Media SA
                2296-7745
                January 12 2022
                January 12 2022
                : 8
                Article
                10.3389/fmars.2021.759603
                541ebc82-c79f-4d57-bc8e-c4ba347760ed
                © 2022

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article