22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interplay between ROS and Antioxidants during Ischemia-Reperfusion Injuries in Cardiac and Skeletal Muscle

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ischemia reperfusion (IR), present in myocardial infarction or extremity injuries, is a major clinical issue and leads to substantial tissue damage. Molecular mechanisms underlying IR injury in striated muscles involve the production of reactive oxygen species (ROS). Excessive ROS accumulation results in cellular oxidative stress, mitochondrial dysfunction, and initiation of cell death by activation of the mitochondrial permeability transition pore. Elevated ROS levels can also decrease myofibrillar Ca 2+ sensitivity, thereby compromising muscle contractile function. Low levels of ROS can act as signaling molecules involved in the protective pathways of ischemic preconditioning (IPC). By scavenging ROS, antioxidant therapies aim to prevent IR injuries with positive treatment outcomes. Novel therapies such as postconditioning and pharmacological interventions that target IPC pathways hold great potential in attenuating IR injuries. Factors such as aging and diabetes could have a significant impact on the severity of IR injuries. The current paper aims to provide a comprehensive review on the multifaceted roles of ROS in IR injuries, with a focus on cardiac and skeletal muscle, as well as recent advancement in ROS-related therapies.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: not found
          • Article: not found

          Malondialdehyde determination as index of lipid peroxidation.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mitochondrial permeability transition pore and its role in cell death.

            M Crompton (1999)
            This article reviews the involvement of the mitochondrial permeability transition pore in necrotic and apoptotic cell death. The pore is formed from a complex of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocase and cyclophilin-D (CyP-D) at contact sites between the mitochondrial outer and inner membranes. In vitro, under pseudopathological conditions of oxidative stress, relatively high Ca2+ and low ATP, the complex flickers into an open-pore state allowing free diffusion of low-Mr solutes across the inner membrane. These conditions correspond to those that unfold during tissue ischaemia and reperfusion, suggesting that pore opening may be an important factor in the pathogenesis of necrotic cell death following ischaemia/reperfusion. Evidence that the pore does open during ischaemia/reperfusion is discussed. There are also strong indications that the VDAC-adenine nucleotide translocase-CyP-D complex can recruit a number of other proteins, including Bax, and that the complex is utilized in some capacity during apoptosis. The apoptotic pathway is amplified by the release of apoptogenic proteins from the mitochondrial intermembrane space, including cytochrome c, apoptosis-inducing factor and some procaspases. Current evidence that the pore complex is involved in outer-membrane rupture and release of these proteins during programmed cell death is reviewed, along with indications that transient pore opening may provoke 'accidental' apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Myeloperoxidase: a front-line defender against phagocytosed microorganisms.

              Successful immune defense requires integration of multiple effector systems to match the diverse virulence properties that members of the microbial world might express as they initiate and promote infection. Human neutrophils--the first cellular responders to invading microbes--exert most of their antimicrobial activity in phagosomes, specialized membrane-bound intracellular compartments formed by ingestion of microorganisms. The toxins generated de novo by the phagocyte NADPH oxidase and delivered by fusion of neutrophil granules with nascent phagosomes create conditions that kill and degrade ingested microbes. Antimicrobial activity reflects multiple and complex synergies among the phagosomal contents, and optimal action relies on oxidants generated in the presence of MPO. The absence of life-threatening infectious complications in individuals with MPO deficiency is frequently offered as evidence that the MPO oxidant system is ancillary rather than essential for neutrophil-mediated antimicrobial activity. However, that argument fails to consider observations from humans and KO mice that demonstrate that microbial killing by MPO-deficient cells is less efficient than that of normal neutrophils. We present evidence in support of MPO as a major arm of oxidative killing by neutrophils and propose that the essential contribution of MPO to normal innate host defense is manifest only when exposure to pathogens overwhelms the capacity of other host defense mechanisms.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                31 January 2018
                February 2018
                : 19
                : 2
                : 417
                Affiliations
                [1 ]Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; zhou.1273@ 123456osu.edu (T.Z.); prather.50@ 123456buckeyemail.osu.edu (E.R.P.); garrison.189@ 123456buckeyemail.osu.edu (D.E.G.)
                [2 ]Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
                Author notes
                [* ]Correspondence: zuo.4@ 123456osu.edu ; Tel.: +1-614-292-5740
                Author information
                https://orcid.org/0000-0003-0553-0994
                Article
                ijms-19-00417
                10.3390/ijms19020417
                5855639
                29385043
                5360a1fb-a08e-4b5c-ba29-2c8762638f56
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 November 2017
                : 21 January 2018
                Categories
                Review

                Molecular biology
                contraction,ischemic preconditioning,free radicals,cytochrome c
                Molecular biology
                contraction, ischemic preconditioning, free radicals, cytochrome c

                Comments

                Comment on this article