5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Novel Serpin Regulatory Mechanism : SerpinB9 IS REVERSIBLY INHIBITED BY VICINAL DISULFIDE BOND FORMATION IN THE REACTIVE CENTER LOOP

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Lysosomal cell death at a glance.

          Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discrete Generation of Superoxide and Hydrogen Peroxide by T Cell Receptor Stimulation

            Receptor-stimulated generation of reactive oxygen species (ROS) has been shown to regulate signal transduction, and previous studies have suggested that T cell receptor (TCR) signals may involve or be sensitive to ROS. In this study, we have shown for the first time that TCR cross-linking induced rapid (within 15 min) generation of both hydrogen peroxide and superoxide anion, as defined with oxidation-sensitive dyes, selective pharmacologic antioxidants, and overexpression of specific antioxidant enzymes. Furthermore, the data suggest the novel observation that superoxide anion and hydrogen peroxide are produced separately by distinct TCR-stimulated pathways. Unexpectedly, TCR-stimulated activation of the Fas ligand (FasL) promoter and subsequent cell death was dependent upon superoxide anion, but independent of hydrogen peroxide, while nuclear factor of activated T cells (NFAT) activation or interleukin 2 transcription was independent of all ROS. Anti-CD3 induced phosphorylation of extracellular signal–regulated kinase (ERK)1/2 required hydrogen peroxide generation but was unaffected by superoxide anion. Thus, antigen receptor signaling induces generation of discrete species of oxidants that selectively regulate two distinct redox sensitive pathways, a proapoptotic (FasL) and a proliferative pathway (ERK).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of reactive oxygen species in stem cells and cancer stem cells.

              Stem cells are defined by their ability to self-renew and their multi-potent differentiation capacity. As such, stem cells maintain tissue homeostasis throughout the life of a multicellular organism. Aerobic metabolism, while enabling efficient energy production, also generates reactive oxygen species (ROS), which damage cellular components. Until recently, the focus in stem cell biology has been on the adverse effects of ROS, particularly the damaging effects of ROS accumulation on tissue aging and the development of cancer, and various anti-oxidative and anti-stress mechanisms of stem cells have been characterized. However, it has become increasingly clear that, in some cases, redox status plays an important role in stem cell maintenance, i.e., regulation of the cell cycle. An active area of current research is redox regulation in various cancer stem cells, the malignant counterparts of normal stem cells that are viewed as good targets of cancer therapy. In contrast to cancer cells, in which ROS levels are increased, some cancer stem cells maintain low ROS levels, exhibiting redox patterns that are similar to the corresponding normal stem cell. To fully elucidate the mechanisms involved in stem cell maintenance and to effectively target cancer stem cells, it is essential to understand ROS regulatory mechanisms in these different cell types. Here, the mechanisms of redox regulation in normal stem cells, cancer cells, and cancer stem cells are reviewed. Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                February 12 2016
                February 12 2016
                February 12 2016
                December 15 2015
                : 291
                : 7
                : 3626-3638
                Article
                10.1074/jbc.M115.699298
                26670609
                4f158508-1c4c-49cb-9773-a7bea99534b7
                © 2015
                History

                Comments

                Comment on this article