17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Excitotoxicity: Still Hammering the Ischemic Brain in 2020

      review-article
      *
      Frontiers in Neuroscience
      Frontiers Media S.A.
      excitatory amino acids, glutamate, zinc, stroke, hypoxia, ischemia, excitotoxicity, neurotoxicity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.

          Related collections

          Most cited references406

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: process and function.

          Ferroptosis is a recently recognized form of regulated cell death. It is characterized morphologically by the presence of smaller than normal mitochondria with condensed mitochondrial membrane densities, reduction or vanishing of mitochondria crista, and outer mitochondrial membrane rupture. It can be induced by experimental compounds (e.g., erastin, Ras-selective lethal small molecule 3, and buthionine sulfoximine) or clinical drugs (e.g., sulfasalazine, sorafenib, and artesunate) in cancer cells and certain normal cells (e.g., kidney tubule cells, neurons, fibroblasts, and T cells). Activation of mitochondrial voltage-dependent anion channels and mitogen-activated protein kinases, upregulation of endoplasmic reticulum stress, and inhibition of cystine/glutamate antiporter is involved in the induction of ferroptosis. This process is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism and can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and desferrioxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin, liproxstatin, and zileuton). Glutathione peroxidase 4, heat shock protein beta-1, and nuclear factor erythroid 2-related factor 2 function as negative regulators of ferroptosis by limiting ROS production and reducing cellular iron uptake, respectively. In contrast, NADPH oxidase and p53 (especially acetylation-defective mutant p53) act as positive regulators of ferroptosis by promotion of ROS production and inhibition of expression of SLC7A11 (a specific light-chain subunit of the cystine/glutamate antiporter), respectively. Misregulated ferroptosis has been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, acute renal failure, drug-induced hepatotoxicity, hepatic and heart ischemia/reperfusion injury, and T-cell immunity. In this review, we summarize the regulation mechanisms and signaling pathways of ferroptosis and discuss the role of ferroptosis in disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.

            For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TRP channels.

              The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                26 October 2020
                2020
                : 14
                : 579953
                Affiliations
                Department of Neurology, SUNY Stony Brook , Stony Brook, NY, United States
                Author notes

                Edited by: Stefano L. Sensi, University of Studies G. d’Annunzio Chieti and Pescara, Italy

                Reviewed by: Raymond A. Swanson, University of California, San Francisco, United States; Hannah Monyer, German Cancer Research Center (DKFZ), Germany

                *Correspondence: Dennis W. Choi, dennis.choi@ 123456stonybrookmedicine.edu

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.579953
                7649323
                33192266
                4b2dbcb8-34ae-4a49-b2e6-79e1c387f640
                Copyright © 2020 Choi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 July 2020
                : 25 September 2020
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 406, Pages: 27, Words: 0
                Categories
                Neuroscience
                Review

                Neurosciences
                excitatory amino acids,glutamate,zinc,stroke,hypoxia,ischemia,excitotoxicity,neurotoxicity
                Neurosciences
                excitatory amino acids, glutamate, zinc, stroke, hypoxia, ischemia, excitotoxicity, neurotoxicity

                Comments

                Comment on this article