40
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of animal models of neurobehavioral disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Animal models play a central role in all areas of biomedical research. The process of animal model building, development and evaluation has rarely been addressed systematically, despite the long history of using animal models in the investigation of neuropsychiatric disorders and behavioral dysfunctions. An iterative, multi-stage trajectory for developing animal models and assessing their quality is proposed. The process starts with defining the purpose(s) of the model, preferentially based on hypotheses about brain-behavior relationships. Then, the model is developed and tested. The evaluation of the model takes scientific and ethical criteria into consideration.

          Model development requires a multidisciplinary approach. Preclinical and clinical experts should establish a set of scientific criteria, which a model must meet. The scientific evaluation consists of assessing the replicability/reliability, predictive, construct and external validity/generalizability, and relevance of the model. We emphasize the role of (systematic and extended) replications in the course of the validation process. One may apply a multiple-tiered 'replication battery' to estimate the reliability/replicability, validity, and generalizability of result.

          Compromised welfare is inherent in many deficiency models in animals. Unfortunately, 'animal welfare' is a vaguely defined concept, making it difficult to establish exact evaluation criteria. Weighing the animal's welfare and considerations as to whether action is indicated to reduce the discomfort must accompany the scientific evaluation at any stage of the model building and evaluation process. Animal model building should be discontinued if the model does not meet the preset scientific criteria, or when animal welfare is severely compromised. The application of the evaluation procedure is exemplified using the rat with neonatal hippocampal lesion as a proposed model of schizophrenia.

          In a manner congruent to that for improving animal models, guided by the procedure expounded upon in this paper, the developmental and evaluation procedure itself may be improved by careful definition of the purpose(s) of a model and by defining better evaluation criteria, based on the proposed use of the model.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation.

          This paper evaluates the validity, reliability and utility of the chronic mild stress (CMS) model of depression. In the CMS model, rats or mice are exposed sequentially, over a period of weeks, to a variety of mild stressors, and the measure most commonly used to track the effects is a decrease in consumption of a palatable sweet solution. The model has good predictive validity (behavioural changes are reversed by chronic treatment with a wide variety of antidepressants), face validity (almost all demonstrable symptoms of depression have been demonstrated), and construct validity (CMS causes a generalized decrease in responsiveness to rewards, comparable to anhedonia, the core symptom of the melancholic subtype of major depressive disorder). Overall, the CMS procedure appears to be at least as valid as any other animal model of depression. The procedure does, however, have two major drawbacks. One is the practical difficulty of carrying out CMS experiments, which are labour intensive, demanding of space, and of long duration. The other is that, while the procedure operates reliably in many laboratories, it can be difficult to establish, for reasons which remain unclear. However, once established, the CMS model can be used to study problems that are extremely difficult to address by other means.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease.

            Why do we get the stress-related diseases we do? Why do some people have flare ups of autoimmune disease, whereas others suffer from melancholic depression during a stressful period in their life? In the present review possible explanations will be given by using different levels of analysis. First, we explain in evolutionary terms why different organisms adopt different behavioral strategies to cope with stress. It has become clear that natural selection maintains a balance of different traits preserving genes for high aggression (Hawks) and low aggression (Doves) within a population. The existence of these personality types (Hawks-Doves) is widespread in the animal kingdom, not only between males and females but also within the same gender across species. Second, proximate (causal) explanations are given for the different stress responses and how they work. Hawks and Doves differ in underlying physiology and these differences are associated with their respective behavioral strategies; for example, bold Hawks preferentially adopt the fight-flight response when establishing a new territory or defending an existing territory, while cautious Doves show the freeze-hide response to adapt to threats in their environment. Thus, adaptive processes that actively maintain stability through change (allostasis) depend on the personality type and the associated stress responses. Third, we describe how the expression of the various stress responses can result in specific benefits to the organism. Fourth, we discuss how the benefits of allostasis and the costs of adaptation (allostatic load) lead to different trade-offs in health and disease, thereby reinforcing a Darwinian concept of stress. Collectively, this provides some explanation of why individuals may differ in their vulnerability to different stress-related diseases and how this relates to the range of personality types, especially aggressive Hawks and non-aggressive Doves in a population. A conceptual framework is presented showing that Hawks, due to inefficient management of mediators of allostasis, are more likely to be violent, to develop impulse control disorders, hypertension, cardiac arrhythmias, sudden death, atypical depression, chronic fatigue states and inflammation. In contrast, Doves, due to the greater release of mediators of allostasis (surplus), are more susceptible to anxiety disorders, metabolic syndromes, melancholic depression, psychotic states and infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measuring normal and pathological anxiety-like behaviour in mice: a review.

              Measuring anxiety-like behaviour in mice has been mostly undertaken using a few classical animal models of anxiety such as the elevated plus-maze, the light/dark choice or the open-field tests. All these procedures are based upon the exposure of subjects to unfamiliar aversive places. Anxiety can also be elicited by a range of threats such as predator exposure. Furthermore, the concepts of "state" and "trait" anxiety have been proposed to differentiate anxiety that the subject experiences at a particular moment of time and that is increased by the presence of an anxiogenic stimulus, and anxiety that does not vary from moment to moment and is considered to be an "enduring feature of an individual". Thus, when assessing the behaviour of mice, it is necessary to increase the range of behavioural paradigms used, including animal models of "state" and "trait" anxiety. In the last few years, many mice with targeted mutations have been generated. Among them some have been proposed as animal models of pathological anxiety, since they display high level of anxiety-related behaviours in classical tests. However, it is important to emphasise that such mice are animal models of a single gene dysfunction, rather than models of anxiety, per se. Inbred strains of mice, such as the BALB/c line, which exhibits spontaneously elevated anxiety appear to be a more suitable model of pathological anxiety.
                Bookmark

                Author and article information

                Journal
                Behav Brain Funct
                Behavioral and Brain Functions : BBF
                BioMed Central
                1744-9081
                2009
                25 February 2009
                : 5
                : 11
                Affiliations
                [1 ]Program 'Emotion and Cognition', Department of Farm Animal Health, Veterinary Faculty, Utrecht University, PO Box 80166, 3508 TD Utrecht, the Netherlands
                [2 ]Division of Laboratory Animal Science, Department of Animals, Science and Society, Veterinary Faculty, Utrecht University, the Netherlands
                Article
                1744-9081-5-11
                10.1186/1744-9081-5-11
                2669803
                19243583
                4a5faaec-3af7-4f91-953c-70b82ce45b73
                Copyright © 2009 Staay et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 September 2008
                : 25 February 2009
                Categories
                Methodology

                Neurology
                Neurology

                Comments

                Comment on this article