6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Increased Slope of the Lateral Tibial Plateau Subchondral Bone Is Associated With Greater Risk of Noncontact ACL Injury in Females but Not in Males : A Prospective Cohort Study With a Nested, Matched Case-Control Analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          There is an emerging consensus that increased posterior-inferior directed slope of the subchondral bone portion of the tibial plateau is associated with increased risk of suffering an anterior cruciate ligament (ACL) injury; however, most of what is known about this relationship has come from unmatched case-control studies. These observations need to be confirmed in more rigorously designed investigations.

          Hypothesis:

          Increased posterior-inferior directed slope of the medial and lateral tibial plateaus are associated with increased risk of suffering a noncontact ACL injury.

          Study Design:

          Case-control study; Level of evidence, 3.

          Methods:

          In sum, 176 athletes competing in organized sports at the college and high school levels participated in the study: 88 suffering their first noncontact ACL injury and 88 matched controls. Magnetic resonance images were acquired, and geometry of the subchondral bone portion of the tibial plateau was characterized on each athlete bilaterally by measuring the medial and lateral tibial plateau slopes, coronal tibial slope, and the depth of the medial tibial plateau. Comparisons between knees of the same person were made with paired t tests, and associations with injury risk were assessed by conditional logistic regression analysis of ACL-injured and control participants.

          Results:

          Controls exhibited side-to-side symmetry of subchondral bone geometry, while the ACL-injured athletes did not, suggesting that the ACL injury may have changed the subchondral bone geometry. Therefore, the uninjured knees of the ACL-injured athletes and the corresponding limbs of their matched controls were used to assess associations with injury risk. Analyses of males and females as a combined group and females as a separate group showed a significant association between ACL injury risk and increased posterior-inferior directed slope of the lateral tibial plateau slope. This relationship was not apparent when males were analyzed as a group. Multivariate analyses indicated that these results were independent of the medial tibial plateau slope, coronal tibial slope, and depth of the medial tibial plateau, which were not associated with ACL injury.

          Conclusion:

          There is a 21.7% increased risk of noncontact ACL injury with each degree increase of the lateral tibial plateau slope among females but not among males. The medial tibial plateau slope, coronal tibial slope, and depth of the medial tibial plateau were not associated with risk of injury for females or males.

          Related collections

          Author and article information

          Journal
          7609541
          467
          Am J Sports Med
          Am J Sports Med
          The American journal of sports medicine
          0363-5465
          1552-3365
          25 June 2019
          03 March 2014
          May 2014
          02 July 2019
          : 42
          : 5
          : 1039-1048
          Affiliations
          []Department of Orthopaedics and Rehabilitation, University of Vermont, Burlington, Vermont, USA
          []Department of Medical Biostatistics, University of Vermont, Burlington, Vermont, USA
          [§ ]Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
          Author notes

          Investigation performed at the McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, University of Vermont College of Medicine, Burlington, Vermont, USA

          [* ]Address correspondence to Bruce D. Beynnon, PhD, McClure Professor of Musculoskeletal Research, McClure Musculoskeletal Research Center, Department of Orthopedics and Rehabilitation, University of Vermont College of Medicine, Burlington, VT 05405-0084 ( bruce.beynnon@ 123456uvm.edu ).
          Article
          PMC6604044 PMC6604044 6604044 nihpa1026534
          10.1177/0363546514523721
          6604044
          24590006
          49af55a2-f2ef-46f6-9bb5-9ed88d3dee1e
          History
          Categories
          Article

          injury prevention,ligaments,knee,biomechanics of ligament,anterior cruciate ligament

          Comments

          Comment on this article