6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      In vivo characterization of protein uptake by yeast cell envelope: single cell AFM imaging and μ-tip-enhanced Raman scattering study

      , , , ,
      The Analyst
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Direct detection of biological transformations of single living cells in vivo has been performed by the advanced combination of local topographic imaging by Atomic Force Microscopy (AFM) and label-free sub-surface chemical characterization using new μ-Tip-Enhanced Raman Spectroscopy (μ-TERS). The enhancing mechanism for μ-TERS tips with micrometre range radius differs significantly to that of the conventional tapered structures terminated by a sharp apex and conditioned by the effects of propagating instead of localizing surface plasmon resonance phenomena. Sub-wavelength light confinement in the form of a nonradiative evanescent wave near the tip surface with penetration depth in the sub-micrometre range opens the way for monitoring of subsurface processes near or within the cell wall, inaccessible by other methods. The efficiency of the approach has been demonstrated by the analysis of the cell envelope of genetically modified (by glucose dehydrogenase (GDH) gene bearing Kluyveromyces lactis toxin signal sequence) yeast cells enriched by GDH protein. The presence of trans-membrane fragments in GDH together with the tendency to form active dimers and tetramers causes the accumulation of the proteins within the periplasmic space. These results demonstrate that the advanced combination of AFM imaging and subsurface chemical characterization by the novel μ-TERS technique provides a new analytical tool for the investigation of single living cells in vivo.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Biosensing with plasmonic nanosensors.

          Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nanoscale chemical analysis by tip-enhanced Raman spectroscopy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Probing the ultimate limits of plasmonic enhancement.

              Metals support surface plasmons at optical wavelengths and have the ability to localize light to subwavelength regions. The field enhancements that occur in these regions set the ultimate limitations on a wide range of nonlinear and quantum optical phenomena. We found that the dominant limiting factor is not the resistive loss of the metal, but rather the intrinsic nonlocality of its dielectric response. A semiclassical model of the electronic response of a metal places strict bounds on the ultimate field enhancement. To demonstrate the accuracy of this model, we studied optical scattering from gold nanoparticles spaced a few angstroms from a gold film. The bounds derived from the models and experiments impose limitations on all nanophotonic systems.
                Bookmark

                Author and article information

                Journal
                ANALAO
                The Analyst
                Analyst
                Royal Society of Chemistry (RSC)
                0003-2654
                1364-5528
                2013
                2013
                : 138
                : 18
                : 5371
                Article
                10.1039/c3an00362k
                23877230
                4869793e-eb15-482c-80ac-fd468db49989
                © 2013
                History

                Comments

                Comment on this article