3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of GPR39 in Neurovascular Homeostasis and Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GPR39, a member of the ghrelin family of G protein-coupled receptors, is zinc-responsive and contributes to the regulation of diverse neurovascular and neurologic functions. Accumulating evidence suggests a role as a homeostatic regulator of neuronal excitability, vascular tone, and the immune response. We review GPR39 structure, function, and signaling, including constitutive activity and biased signaling, and summarize its expression pattern in the central nervous system. We further discuss its recognized role in neurovascular, neurological, and neuropsychiatric disorders.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          A neurotrophic model for stress-related mood disorders.

          There is a growing body of evidence demonstrating that stress decreases the expression of brain-derived neurotrophic factor (BDNF) in limbic structures that control mood and that antidepressant treatment reverses or blocks the effects of stress. Decreased levels of BDNF, as well as other neurotrophic factors, could contribute to the atrophy of certain limbic structures, including the hippocampus and prefrontal cortex that has been observed in depressed subjects. Conversely, the neurotrophic actions of antidepressants could reverse neuronal atrophy and cell loss and thereby contribute to the therapeutic actions of these treatments. This review provides a critical examination of the neurotrophic hypothesis of depression that has evolved from this work, including analysis of preclinical cellular (adult neurogenesis) and behavioral models of depression and antidepressant actions, as well as clinical neuroimaging and postmortem studies. Although there are some limitations, the results of these studies are consistent with the hypothesis that decreased expression of BDNF and possibly other growth factors contributes to depression and that upregulation of BDNF plays a role in the actions of antidepressant treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trends in GPCR drug discovery: new agents, targets and indications

            G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, largely due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report the first analysis of all GPCR drugs and agents in clinical trials. This reveals the current trends across molecule types, drug targets and therapeutic indications, including showing that 481 drugs (~34% of all drugs approved by the FDA) act at 107 unique GPCR targets. Approximately 320 agents are currently in clinical trials, of which ~36% target 64 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has grown. The major disease indications for GPCR modulators show a shift towards diabetes, obesity, and Alzheimer’s disease, while other central nervous system disorders remain highly represented. The 227 (57%) non-olfactory GPCRs that are yet to be explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Function and regulation of CREB family transcription factors in the nervous system.

              CREB and its close relatives are now widely accepted as prototypical stimulus-inducible transcription factors. In many cell types, these factors function as effector molecules that bring about cellular changes in response to discrete sets of instructions. In neurons, a wide range of extracellular stimuli are capable of activating CREB family members, and CREB-dependent gene expression has been implicated in complex and diverse processes ranging from development to plasticity to disease. In this review, we focus on the current level of understanding of where, when, and how CREB family members function in the nervous system.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 July 2021
                August 2021
                : 22
                : 15
                : 8200
                Affiliations
                [1 ]Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA; xyi@ 123456ohsu.edu
                [2 ]Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA; barnesan@ 123456ohsu.edu
                Author notes
                [* ]Correspondence: alkayedn@ 123456ohsu.edu
                Author information
                https://orcid.org/0000-0002-3136-8858
                https://orcid.org/0000-0002-3489-4730
                Article
                ijms-22-08200
                10.3390/ijms22158200
                8346997
                34360964
                4809a7b5-4f67-4faa-93a2-ed34ac58f093
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 07 July 2021
                : 26 July 2021
                Categories
                Review

                Molecular biology
                gpr39,zinc,eicosanoids,biased agonist,dementia,vascular tone,depression,epilepsy
                Molecular biology
                gpr39, zinc, eicosanoids, biased agonist, dementia, vascular tone, depression, epilepsy

                Comments

                Comment on this article