7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cordycepin enhances anti-tumor immunity in breast cancer by enhanceing ALB expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The treatment of breast cancer still faces great challenges, and it is necessary to continuously explore effective drugs and targets to promote immune precision medicine. This study aims to investigate the immune-related regulatory mechanism of cordycepin in breast cancer.

          Methods

          Network pharmacology was employed to discovery the action of cordyceps on breast cancer targets, molecular docking was employed to analyze the interaction pattern between core components and targets, and biological information analysis was used to explore the target-related immune mechanism and verified in vitro experiments.

          Results

          The results of this study indicate that cordycepin can effectively inhibit breast cancer. The roles of cordycepin's active component and its target gene ALB were elucidated through the combined use of network pharmacology and molecular docking. Bioinformatics analysis revealed convincing associations between ALB and many immune pathway marker genes. ALB was inhibited in tumor expression, and cordycepin was found to enhance the expression of ALB in vitro to play an anti-tumor role.

          Conclusion

          Cordycepin regulates immune suppression of tumor, which is expected to open a new chapter of breast cancer immunotherapy.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets

          Abstract Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein–protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein–protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Protein Data Bank.

            The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells.

              Recent clinical successes of cancer immunotherapy necessitate the investigation of the interaction between malignant cells and the host immune system. However, elucidation of complex tumor-immune interactions presents major computational and experimental challenges. Here, we present Tumor Immune Estimation Resource (TIMER; cistrome.shinyapps.io/timer) to comprehensively investigate molecular characterization of tumor-immune interactions. Levels of six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. TIMER provides 6 major analytic modules that allow users to interactively explore the associations between immune infiltrates and a wide spectrum of factors, including gene expression, clinical outcomes, somatic mutations, and somatic copy number alterations. TIMER provides a user-friendly web interface for dynamic analysis and visualization of these associations, which will be of broad utilities to cancer researchers. Cancer Res; 77(21); e108-10. ©2017 AACR.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                25 April 2024
                15 May 2024
                25 April 2024
                : 10
                : 9
                : e29903
                Affiliations
                [a ]Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
                [b ]Department of General Surgery, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
                [c ]Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, China
                [d ]The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, China
                Author notes
                [* ]Corresponding author. dengrong1977@ 123456163.com
                [** ]Corresponding author. sunbc@ 123456nju.edu.cn
                [1]

                These authors have contributed equally to this work and share first authorship.

                Article
                S2405-8440(24)05934-6 e29903
                10.1016/j.heliyon.2024.e29903
                11076851
                38720766
                465cde9d-c9cf-4c0e-9d89-82b39c33e3c4
                © 2024 Published by Elsevier Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 8 February 2024
                : 17 April 2024
                : 17 April 2024
                Categories
                Research Article

                breast cancer,immunotherapy,alb,cordycepin,natural medicines

                Comments

                Comment on this article