9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      LRRK2 Knockout Confers Resistance in HEK-293 Cells to Rotenone-Induced Oxidative Stress, Mitochondrial Damage, and Apoptosis.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leucine-rich repeat kinase 2 (LRRK2) has been linked to dopaminergic neuronal vulnerability to oxidative stress (OS), mitochondrial impairment, and increased cell death in idiopathic and familial Parkinson's disease (PD). However, how exactly this kinase participates in the OS-mitochondria-apoptosis connection is still unknown. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 LRRK2 knockout (KO) in the human embryonic kidney cell line 293 (HEK-293) to evaluate the cellular response to the mitochondrial inhibitor complex I rotenone (ROT), a well-known OS and cell death inducer. We report successful knockout of the LRRK2 gene in HEK-293 cells using CRISPR editing (ICE, approximately 60%) and flow cytometry (81%) analyses. We found that HEK-293 LRRK2 WT cells exposed to rotenone (ROT, 50 μM) resulted in a significant increase in intracellular reactive oxygen species (ROS, +7400%); oxidized DJ-1-Cys106-SO3 (+52%); phosphorylation of LRRK2 (+70%) and c-JUN (+171%); enhanced expression of tumor protein (TP53, +2000%), p53 upregulated modulator of apoptosis (PUMA, +1950%), and Parkin (PRKN, +22%); activation of caspase 3 (CASP3, +8000%), DNA fragmentation (+35%) and decreased mitochondrial membrane potential (ΔΨm, -58%) and PTEN induced putative kinase 1 (PINK1, -49%) when compared to untreated cells. The translocation of the cytoplasmic fission protein dynamin-related Protein 1 (DRP1) to mitochondria was also observed by colocalization with translocase of the outer membrane 20 (TOM20). Outstandingly, HEK-293 LRRK2 KO cells treated with ROT showed unaltered OS and apoptosis markers. We conclude that loss of LRRK2 causes HEK-293 to be resistant to ROT-induced OS, mitochondrial damage, and apoptosis in vitro. Our data support the hypothesis that LRRK2 acts as a proapoptotic kinase by regulating mitochondrial proteins (e.g., PRKN, PINK1, DRP1, and PUMA), transcription factors (e.g., c-JUN and TP53), and CASP3 in cells under stress conditions. Taken together, these observations suggest that LRRK2 is an important kinase in the pathogenesis of PD.

          Related collections

          Author and article information

          Journal
          Int J Mol Sci
          International journal of molecular sciences
          MDPI AG
          1422-0067
          1422-0067
          Jun 22 2023
          : 24
          : 13
          Affiliations
          [1 ] Neuroscience Research Group, Institute of Medical Research, Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia.
          [2 ] Genomic Medicine Department, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnólogico Ciencias de la Salud, Av. de la Ilustración 114, 18016 Granada, Spain.
          [3 ] Biochemistry and Molecular Biology 3 and Immunology Department, Faculty of Medicine, University of Granada, Avda. de la Investigacion 11, 18071 Granada, Spain.
          Article
          ijms241310474
          10.3390/ijms241310474
          10341561
          37445652
          43c83fe8-eb21-4e12-b96c-6ccb8e3fa6b1
          History

          knockout,oxidative stress,rotenone,Leucine-rich repeat kinase 2,apoptosis,clustered regularly interspaced short palindromic repeats,gene edition,human embryonic kidney cell line 293

          Comments

          Comment on this article