3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluating Brewers’ Spent Grain Protein Isolate Postprandial Amino Acid Uptake Kinetics: A Randomized, Cross-Over, Double-Blind Controlled Study

      , , , , ,
      Nutrients
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Valorization and utilization of brewers’ spent grain (BSG) are of great interest in terms of reducing food waste and promoting more sustainable food systems. In this study, we aimed to evaluate the nutritional value of upcycled barley/rice proteins (BRP) extracted from BSG and compare this with pea proteins (PP). A randomized, cross-over, double-blind controlled trial was conducted with twelve participants (age: 24 ± 2.8 years, BMI: 23.3 ± 3.0 kg/m2). During three separate visits with a one-week washout period between visits, participants received 20 g BRP, PP, or the benchmark protein whey (WP). Blood-free amino acids (AA) were measured to determine postprandial AA uptake kinetics. The estimated total AA (TAA) uptake of BRP was 69% when compared to WP and 87% when compared to PP. The time to reach the maximum values was similar between the three protein sources. When comparing individual essential AA responses between BRP and PP, we observed higher responses in methionine and tryptophane and lower responses in lysine, histidine, and isoleucine for BRP compared to PP. This study demonstrates that BRP exhibits comparable postprandial TAA uptake profiles to PP. The findings highlight the complementarity of BRP and PP, which may offer the potential for blending approaches to optimize protein quality for overall health.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain

          The gut-brain axis (GBA) is a bilateral communication network between the gastrointestinal (GI) tract and the central nervous system. The essential amino acid tryptophan contributes to the normal growth and health of both animals and humans and, importantly, exerts modulatory functions at multiple levels of the GBA. Tryptophan is the sole precursor of serotonin, which is a key monoamine neurotransmitter participating in the modulation of central neurotransmission and enteric physiological function. In addition, tryptophan can be metabolized into kynurenine, tryptamine, and indole, thereby modulating neuroendocrine and intestinal immune responses. The gut microbial influence on tryptophan metabolism emerges as an important driving force in modulating tryptophan metabolism. Here, we focus on the potential role of tryptophan metabolism in the modulation of brain function by the gut microbiota. We start by outlining existing knowledge on tryptophan metabolism, including serotonin synthesis and degradation pathways of the host, and summarize recent advances in demonstrating the influence of the gut microbiota on tryptophan metabolism. The latest evidence revealing those mechanisms by which the gut microbiota modulates tryptophan metabolism, with subsequent effects on brain function, is reviewed. Finally, the potential modulation of intestinal tryptophan metabolism as a therapeutic option for brain and GI functional disorders is also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain.

            Aromatic amino acids in the brain function as precursors for the monoamine neurotransmitters serotonin (substrate tryptophan) and the catecholamines [dopamine, norepinephrine, epinephrine; substrate tyrosine (Tyr)]. Unlike almost all other neurotransmitter biosynthetic pathways, the rates of synthesis of serotonin and catecholamines in the brain are sensitive to local substrate concentrations, particularly in the ranges normally found in vivo. As a consequence, physiologic factors that influence brain pools of these amino acids, notably diet, influence their rates of conversion to neurotransmitter products, with functional consequences. This review focuses on Tyr and phenylalanine (Phe). Elevating brain Tyr concentrations stimulates catecholamine production, an effect exclusive to actively firing neurons. Increasing the amount of protein ingested, acutely (single meal) or chronically (intake over several days), raises brain Tyr concentrations and stimulates catecholamine synthesis. Phe, like Tyr, is a substrate for Tyr hydroxylase, the enzyme catalyzing the rate-limiting step in catecholamine synthesis. Tyr is the preferred substrate; consequently, unless Tyr concentrations are abnormally low, variations in Phe concentration do not affect catecholamine synthesis. Unlike Tyr, Phe does not demonstrate substrate inhibition. Hence, high concentrations of Phe do not inhibit catecholamine synthesis and probably are not responsible for the low production of catecholamines in subjects with phenylketonuria. Whereas neuronal catecholamine release varies directly with Tyr-induced changes in catecholamine synthesis, and brain functions linked pharmacologically to catecholamine neurons are predictably altered, the physiologic functions that utilize the link between Tyr supply and catecholamine synthesis/release are presently unknown. An attractive candidate is the passive monitoring of protein intake to influence protein-seeking behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men.

              This study was designed to compare the acute response of mixed muscle protein synthesis (MPS) to rapidly (i.e., whey hydrolysate and soy) and slowly (i.e., micellar casein) digested proteins both at rest and after resistance exercise. Three groups of healthy young men (n = 6 per group) performed a bout of unilateral leg resistance exercise followed by the consumption of a drink containing an equivalent content of essential amino acids (10 g) as either whey hydrolysate, micellar casein, or soy protein isolate. Mixed MPS was determined by a primed constant infusion of l-[ring-(13)C(6)]phenylalanine. Ingestion of whey protein resulted in a larger increase in blood essential amino acid, branched-chain amino acid, and leucine concentrations than either casein or soy (P soy > casein); MPS following whey consumption was approximately 122% greater than casein (P < 0.01) and 31% greater than soy (P < 0.05). MPS was also greater with soy consumption at rest (64%) and following resistance exercise (69%) compared with casein (both P < 0.01). We conclude that the feeding-induced simulation of MPS in young men is greater after whey hydrolysate or soy protein consumption than casein both at rest and after resistance exercise; moreover, despite both being fast proteins, whey hydrolysate stimulated MPS to a greater degree than soy after resistance exercise. These differences may be related to how quickly the proteins are digested (i.e., fast vs. slow) or possibly to small differences in leucine content of each protein.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                July 2023
                July 19 2023
                : 15
                : 14
                : 3196
                Article
                10.3390/nu15143196
                37513614
                4295a2f2-8eb0-4e35-a56c-2e55014a929d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article