8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel spin-orbit coupling driven emergent states in iridate-based heterostructures

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent years have seen many examples of how the strong spin-orbit coupling (SOC) present in iridates can stabilize new emergent states that are difficult or impossible to realize in more conventional materials. In this review we outline a representative set of studies detailing how heterostructures based on Ruddlesden-Popper (RP) and perovskite iridates can be used to access yet more novel physics. Beginning with a short synopsis of iridate thin film growth, the effects of the heterostructure morphology on the RP iridates including Sr2IrO4 and SrIrO3 are discussed. Example studies explore the effects of epitaxial strain, laser-excitation to access transient states, topological semimetallicity in SrIrO3, 2D magnetism in artificial RP iridates, and interfacial magnetic coupling between iridate and neighboring layers. Taken together, these works show the fantastic potential for controlled engineering of novel quantum phenomena in iridate heterostructures.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          From quantum matter to high-temperature superconductivity in copper oxides.

          The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the 'normal' state at elevated temperatures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4.

            Measurement of the quantum-mechanical phase in quantum matter provides the most direct manifestation of the underlying abstract physics. We used resonant x-ray scattering to probe the relative phases of constituent atomic orbitals in an electronic wave function, which uncovers the unconventional Mott insulating state induced by relativistic spin-orbit coupling in the layered 5d transition metal oxide Sr2IrO4. A selection rule based on intra-atomic interference effects establishes a complex spin-orbital state represented by an effective total angular momentum = 1/2 quantum number, the phase of which can lead to a quantum topological state of matter.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Quantum spin liquid states

                Bookmark

                Author and article information

                Journal
                20 November 2017
                Article
                1711.07609
                403be92e-ab20-4e73-94f3-072d0131f807

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                17 figures
                cond-mat.str-el

                Comments

                Comment on this article