33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polylactic acid (PLA)—based polymers are ubiquitous in the biomedical field thanks to their combination of attractive peculiarities: biocompatibility (degradation products do not elicit critical responses and are easily metabolized by the body), hydrolytic degradation in situ, tailorable properties, and well-established processing technologies. This led to the development of several applications, such as bone fixation screws, bioresorbable suture threads, and stent coating, just to name a few. Nanomedicine could not be unconcerned by PLA-based materials as well, where their use for the synthesis of nanocarriers for the targeted delivery of hydrophobic drugs emerged as a new promising application. The purpose of the here presented review is two-fold: on one side, it aims at providing a broad overview of PLA-based materials and their properties, which allow them gaining a leading role in the biomedical field; on the other side, it offers a specific focus on their recent use in nanomedicine, highlighting opportunities and perspectives.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review.

          Poly(lactic acid) (PLA), so far, is the most extensively researched and utilized biodegradable aliphatic polyester in human history. Due to its merits, PLA is a leading biomaterial for numerous applications in medicine as well as in industry replacing conventional petrochemical-based polymers. The main purpose of this review is to elaborate the mechanical and physical properties that affect its stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements. This review also summarizes variations in these properties during PLA processing (i.e. thermal degradation and recyclability), biodegradation, packaging and sterilization, and aging (i.e. weathering and hygrothermal). In addition, we discuss up-to-date strategies for PLA properties improvements including components and plasticizer blending, nucleation agent addition, and PLA modifications and nanoformulations. Incorporating better understanding of the role of these properties with available improvement strategies is the key for successful utilization of PLA and its copolymers/composites/blends to maximize their fit with worldwide application needs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?

            F Danhier (2016)
            Tumor targeting by nanomedicine-based therapeutics has emerged as a promising approach to overcome the lack of specificity of conventional chemotherapeutic agents and to provide clinicians the ability to overcome shortcomings of current cancer treatment. The major underlying mechanism of the design of nanomedicines was the Enhanced Permeability and Retention (EPR) effect, considered as the "royal gate" in the drug delivery field. However, after the publication of thousands of research papers, the verdict has been handed down: the EPR effect works in rodents but not in humans! Thus the basic rationale of the design and development of nanomedicines in cancer therapy is failing making it necessary to stop claiming efficacy gains via the EPR effect, while tumor targeting cannot be proved in the clinic. It is probably time to dethrone the EPR effect and to ask the question: what is the future of nanomedicines without the EPR effect? The aim of this review is to provide a general overview on (i) the current state of the EPR effect, (ii) the future of nanomedicine and (iii) the strategies of modulation of the tumor microenvironment to improve the delivery of nanomedicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.

              Foreign particles and cells are cleared from the body by phagocytes that must also recognize and avoid clearance of "self" cells. The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of self by signaling through the phagocyte receptor CD172a. Minimal "Self" peptides were computationally designed from human CD47 and then synthesized and attached to virus-size particles for intravenous injection into mice that express a CD172a variant compatible with hCD47. Self peptides delay macrophage-mediated clearance of nanoparticles, which promotes persistent circulation that enhances dye and drug delivery to tumors. Self-peptide affinity for CD172a is near the optimum measured for human CD172a variants, and Self peptide also potently inhibits nanoparticle uptake mediated by the contractile cytoskeleton. The reductionist approach reveals the importance of human Self peptides and their utility in enhancing drug delivery and imaging.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                11 October 2019
                2019
                : 7
                : 259
                Affiliations
                [1] 1Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences of Southern Switzerland , Manno, Switzerland
                [2] 2Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano , Milan, Italy
                [3] 3Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
                Author notes

                Edited by: Anderson Oliveira Lobo, Federal University of Piauí, Brazil

                Reviewed by: Jianxun Ding, Changchun Institute of Applied Chemistry (CAS), China; Edson Cavalcanti Silva-Filho, Federal University of Piauí, Brazil

                *Correspondence: Tommaso Casalini tommaso.casalini@ 123456supsi.ch

                This article was submitted to Biomaterials, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2019.00259
                6797553
                31681741
                40336536-fdfd-4796-bc03-65462d01b633
                Copyright © 2019 Casalini, Rossi, Castrovinci and Perale.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 05 July 2019
                : 26 September 2019
                Page count
                Figures: 4, Tables: 10, Equations: 4, References: 83, Pages: 16, Words: 11853
                Funding
                Funded by: Kommission für Technologie und Innovation 10.13039/501100001808
                Categories
                Bioengineering and Biotechnology
                Review

                polylactic acid,degradation,processing,nanomedicine,nanoparticles

                Comments

                Comment on this article