3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seasonal variability of nitrous oxide concentrations and emissions in a temperate estuary

      , , , ,
      Biogeosciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Nitrous oxide (N2O) is a greenhouse gas, with a global warming potential 298 times that of carbon dioxide. Estuaries can be sources of N2O, but their emission estimates have significant uncertainties due to limited data availability and high spatiotemporal variability. We investigated the spatial and seasonal variability of dissolved N2O and its emissions along the Elbe Estuary (Germany), a well-mixed temperate estuary with high nutrient loading from agriculture. During nine research cruises performed between 2017 and 2022, we measured dissolved N2O concentrations, as well as dissolved nutrient and oxygen concentrations along the estuary, and calculated N2O saturations, flux densities, and emissions. We found that the estuary was a year-round source of N2O, with the highest emissions in winter when dissolved inorganic nitrogen (DIN) loads and wind speeds are high. However, in spring and summer, N2O saturations and emissions did not decrease alongside lower riverine nitrogen loads, suggesting that estuarine in situ N2O production is an important source of N2O. We identified two hotspot areas of N2O production: the Port of Hamburg, a major port region, and the mesohaline estuary near the maximum turbidity zone (MTZ). N2O production was fueled by the decomposition of riverine organic matter in the Hamburg Port and by marine organic matter in the MTZ. A comparison with previous measurements in the Elbe Estuary revealed that N2O saturation did not decrease alongside the decrease in DIN concentrations after a significant improvement of water quality in the 1990s that allowed for phytoplankton growth to re-establish in the river and estuary. The overarching control of phytoplankton growth on organic matter and, subsequently, on N2O production highlights the fact that eutrophication and elevated agricultural nutrient input can increase N2O emissions in estuaries.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: not found
          • Article: not found

          Sedimentary organic matter preservation: an assessment and speculative synthesis

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nitrous oxide solubility in water and seawater

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Role of nitrifier denitrification in the production of nitrous oxide

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Biogeosciences
                Biogeosciences
                Copernicus GmbH
                1726-4189
                2023
                August 07 2023
                : 20
                : 15
                : 3229-3247
                Article
                10.5194/bg-20-3229-2023
                400feaaa-1fd2-49ff-a34a-d494d873b8e1
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article