9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Centrosome organization and centriole architecture: Their sensitivity to divalent cations

      , , ,
      Journal of Structural Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Centrioles in the cell cycle. I. Epithelial cells

            A study was made of the structure of the centrosome in the cell cycle in a nonsynchronous culture of pig kidney embryo (PE) cells. In the spindle pole of the metaphase cell there are two mutually perpendicular centrioles (mother and daughter) which differ in their ultrastructure. An electron-dense halo, which surrounds only the mother centriole and is the site where spindle microtubules converge, disappears at the end of telophase. In metaphase and anaphase, the mother centriole is situated perpendicular to the spindle axis. At the beginning of the G1 period, pericentriolar satellites are formed on the mother centriole with microtubules attached to them; the two centrioles diverge. The structures of the two centrioles differ throughout interphase; the mother centriole has appendages, the daughter does not. Replication of the centrioles occurs approximately in the middle of the S period. The structure of the procentrioles differs sharply from that of the mature centriole. Elongation of procentrioles is completed in prometaphase, and their structure undergoes a number of successive changes. In the G2 period, pericentriolar satellites disappear and some time later a fibrillar halo is formed on both mother centrioles, i.e., spindle poles begin to form. In the cells that have left the mitotic cycle (G0 period), replication of centrioles does not take place; in many cells, a cilium is formed on the mother centriole. In a small number of cells a cilium is formed in the S and G2 periods, but unlike the cilium in the G0 period it does not reach the surface of the cell. In all cases, it locates on the centriole with appendages. At the beginning of the G1 period, during the G2 period, and in nonciliated cells in the G0 period, one of the centrioles is situated perpendicular to the substrate. On the whole, it takes a mature centriole a cycle and a half to form in PE cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural and chemical characterization of isolated centrosomes.

              A procedure adapted from that described by Mitchison and Kirschner [Nature 312:232-237, 1984] was used to isolate centrosomes from human lymphoid cells. High yields of homogeneous centrosomes (60% of the theoretical total, assuming one centrosome per cell) were obtained. Centrosomes were isolated as pairs of centrioles, plus their associated pericentriolar material. Ultrastructural investigation revealed: 1) a link between both centrioles in a centrosome formed by the gathering in of a unique bundle of thin filaments surrounding each centriole; 2) a stereotypic organization of the pericentriolar material, including a rim of constant width at the proximal end of each centriole and a disc of nine satellite arms organized according to a ninefold symmetry at the distal end and; 3) an axial hub in the lumen of each centriole at the distal end surrounded by some ill-defined material. The total protein content was 2 to 3 X 10(-2) pg per isolated centrosome, a figure that suggests that the preparations were close to homogeneity. The protein composition was complex but specific, showing proteins ranging from 180 to 300 kD, one prominent band at 130 kD, and a group of proteins between 50 and 65 kD. Actin was also present in centrosome preparations. Functional studies demonstrated that the isolated centrosomes were competent to nucleate microtubules in vitro from purified tubulin in conditions in which spontaneous assembly could not occur. They were also very effective at inducing cleavage when microinjected into unfertilized Xenopus eggs.
                Bookmark

                Author and article information

                Journal
                Journal of Structural Biology
                Journal of Structural Biology
                Elsevier BV
                10478477
                March 1992
                March 1992
                : 108
                : 2
                : 107-128
                Article
                10.1016/1047-8477(92)90011-X
                3db788c5-1585-440c-ba78-ce0f119ad4d0
                © 1992

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article